1887

Abstract

During an extensive survey of marine fungi in coastal marine environments from Portugal, a collection of Penicillium isolates were obtained from sea water, macroalgae and driftwood. Sixteen distinct Penicillium species were identified with Penicillium terrigenum and Penicillium brevicompactum being the most frequent. A Penicillium species isolated from sea water could not be affiliated to any known species. Phylogenetic analyses based on the ITS region of the rDNA and the beta-tubulin (benA) gene placed it into Penicillium section Ramosa, distinct from all currently known species and with Penicillium tunisiense as its closest relative. Although having similar morphological characteristics, these species differ in micromorphological and molecular characters. Thus, Penicillium lusitanum sp. nov. is proposed as a novel species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003535
2019-06-20
2019-09-22
Loading full text...

Full text loading...

References

  1. Balabanova L, Slepchenko L, Son O, Tekutyeva L. Biotechnology potential of marine fungi degrading plant and algae polymeric substrates. Front Microbiol 2018;9:1527 [CrossRef][PubMed]
    [Google Scholar]
  2. Raghukumar C. Marine fungal biotechnology: an ecological perspective. Fungal Divers 2008;31:19–35
    [Google Scholar]
  3. Hyde KD, Jones EG, Leaño E, Pointing SB, Poonyth AD et al. Role of fungi in marine ecosystems. Biodivers Conserv 1998;7:1147–1161 [CrossRef]
    [Google Scholar]
  4. Cantrell SA, Casillas-Martínez L, Molina M. Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 2006;110:962–970 [CrossRef][PubMed]
    [Google Scholar]
  5. Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CHW et al. Identification and nomenclature of the genus Penicillium. Stud Mycol 2014;78:343–371 [CrossRef]
    [Google Scholar]
  6. Frisvad JC, Smedsgaard J, Larsen TO, Samson RA. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 2004;49:201–241
    [Google Scholar]
  7. Deshmukh SK, Prakash V, Ranjan N. Marine fungi: a source of potential anticancer compounds. Front Microbiol 2018;8:2536 [CrossRef][PubMed]
    [Google Scholar]
  8. Edrada RA, Heubes M, Brauers G, Wray V, Berg A et al. Online analysis of Xestodecalactones A-C, novel bioactive metabolites from the fungus Penicillium cf. montanense and their subsequent isolation from the sponge Xestospongia exigua. J Nat Prod 2002;65:1598–1604 [CrossRef][PubMed]
    [Google Scholar]
  9. Komatsu K, Shigemori H, Mikami Y, Kobayashi J. Sculezonones A and B, two metabolites possessing a phenalenone skeleton from a marine-derived fungus Penicillium species. J Nat Prod 2000;63:408–409 [CrossRef][PubMed]
    [Google Scholar]
  10. Möller EM, Bahnweg G, Sandermann H, Geiger HH. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res 1992;20:6115–6116 [CrossRef][PubMed]
    [Google Scholar]
  11. Alves A, Phillips AJ, Henriques I, Correia A. Rapid differentiation of species of Botryosphaeriaceae by PCR fingerprinting. Res Microbiol 2007;158:112–121 [CrossRef][PubMed]
    [Google Scholar]
  12. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal genes for phylogenies. In Innis MA, Gelfand DH, Sninsky JJ, White TJ. (eds) PCR Protocols: A Guide to Methods and Applications California: Academic Press; 1990; pp.315–322
    [Google Scholar]
  13. Alves A, Correia A, Luque J, Phillips A. Botryosphaeria corticola, sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph, Diplodia mutila. Mycologia 2004;96:598–613 [CrossRef][PubMed]
    [Google Scholar]
  14. Glass NL, Donaldson G. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995;61:1323–1330[PubMed]
    [Google Scholar]
  15. Lopes A, Phillips AJ, Alves A. Mating type genes in the genus Neofusicoccum: Mating strategies and usefulness in species delimitation. Fungal Biol 2017;121:394–404 [CrossRef][PubMed]
    [Google Scholar]
  16. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  17. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  19. Rayner RW. A Mycological Colour Chart Kew: Commonwealth Mycological Institute; 1970
    [Google Scholar]
  20. Visagie CM, Houbraken J, Frisvad JC, Hong SB, Klaassen CH et al. Identification and nomenclature of the genus Penicillium. Stud Mycol 2014;78:343–371 [CrossRef][PubMed]
    [Google Scholar]
  21. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S et al. Biodiversity of the genus Penicillium in different habitats. New and Future Developments in Microbial Biotechnology and Bioengineering Elsevier; 2018; pp.3–18
    [Google Scholar]
  22. Park MS, Eom JE, Fong JJ, Lim YW. New record and enzyme activity of four species in Penicillium section Citrina from marine environments in Korea. J Microbiol 2015;53:219–225 [CrossRef][PubMed]
    [Google Scholar]
  23. Park MS, Lee S, Oh SY, Cho GY, Lim YW. Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island. J Microbiol 2016;54:646–654 [CrossRef][PubMed]
    [Google Scholar]
  24. Park MS, Lee EJ, Fong JJ, Sohn JH, Lim YW. A new record of Penicillium antarcticum from marine environments in Korea. Mycobiology 2014;42:109–113 [CrossRef][PubMed]
    [Google Scholar]
  25. Butinar L, Frisvad JC, Gunde-Cimerman N. Hypersaline waters - a potential source of foodborne toxigenic aspergilli and penicillia. FEMS Microbiol Ecol 2011;77:186–199 [CrossRef][PubMed]
    [Google Scholar]
  26. Zuccaro A, Schoch CL, Spatafora JW, Kohlmeyer J, Draeger S et al. Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Microbiol 2008;74:931–941 [CrossRef][PubMed]
    [Google Scholar]
  27. Li CS, An CY, Li XM, Gao SS, Cui CM et al. Triazole and dihydroimidazole alkaloids from the marine sediment-derived fungus Penicillium paneum SD-44. J Nat Prod 2011;74:1331–1334 [CrossRef][PubMed]
    [Google Scholar]
  28. Gao SS, Li XM, du FY, Li CS, Proksch P et al. Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Mar Drugs 2010;9:59–70 [CrossRef][PubMed]
    [Google Scholar]
  29. Kagata T, Shigemori H, Mikami Y, Kobayashi J. Coruscol A, a new metabolite from the marine-derived fungus Penicillium species. J Nat Prod 2000;63:886–887 [CrossRef][PubMed]
    [Google Scholar]
  30. Komatsu K, Shigemori H, Mikami Y, Kobayashi J. Sculezonones A and B, two metabolites possessing a phenalenone skeleton from a marine-derived fungus Penicillium species. J Nat Prod 2000;63:408–409 [CrossRef][PubMed]
    [Google Scholar]
  31. Bugni TS, Janso JE, Williamson RT, Feng X, Bernan VS et al. Dictyosphaeric acids A and B: new decalactones from an undescribed Penicillium sp. obtained from the alga Dictyosphaeria versluyii. J Nat Prod 2014;67:1396–1399
    [Google Scholar]
  32. Tsuda M, Kasai Y, Komatsu K, Sone T, Tanaka M et al. Citrinadin A, a novel pentacyclic alkaloid from marine-derived fungus Penicillium citrinum. Org Lett 2004;6:3087–3089 [CrossRef][PubMed]
    [Google Scholar]
  33. Vansteelandt M, Kerzaon I, Blanchet E, Fossi Tankoua O, Robiou du Pont T et al. Patulin and secondary metabolite production by marine-derived Penicillium strains. Fungal Biol 2012;116:954–961 [CrossRef][PubMed]
    [Google Scholar]
  34. Lee H, Lee YM, Heo YM, Lee H, Hong JH et al. Halo-tolerance of marine-derived fungi and their enzymatic properties. Bioresources 2015;10:8450–8460 [CrossRef]
    [Google Scholar]
  35. De Hoog S, Zalar P, Van Den Ende BG, Gunde-Cimerman N. Relation of halotolerance to human-pathogenicity in the fungal tree of life: an overview of ecology and evolution under stress. Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya Dordrecht: Springer; 2005; pp.371–395
    [Google Scholar]
  36. Ristanović B, Miller CE. Salinity tolerances and ecological aspects of some fungi collected from fresh-water, estuarine and marine habitats. Mycopathol Mycol Appl 1969;37:273–280 [CrossRef]
    [Google Scholar]
  37. Rong C, Ma Y, Wang S, Liu Y, Wang L et al. Penicillium chroogomphum, a new species in Penicillium section Ramosa isolated from fruiting bodies of Chroogomphus rutilus in China. Mycoscience 2016;57:79–84 [CrossRef]
    [Google Scholar]
  38. Ouhibi S, Santos C, Ghali R, Soares C, Hedhili A et al. Penicillium tunisiense sp. nov., a novel species of Penicillium section Ramosa discovered from Tunisian orchard apples. Int J Syst Evol Microbiol 2018;68:3217–3225 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003535
Loading
/content/journal/ijsem/10.1099/ijsem.0.003535
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error