1887

Abstract

Strain 28462, which had Gram-stain-positive, catalase-negative coccus-shaped cells, was isolated from a routine tracheal sample from a 3 year old thoroughbred horse. 16S rRNA gene sequence analysis revealed it to be most closely related to, but distinct from, (95.7 % identity) (95.8 %), (96.4 %) and (95.1 %). Similarity values derived from sequences from and genes were consistent with strain 28462 belonging to a species distinct from these four streptococci. At the whole genome level, strain 28462 had an average nucleotide identity value <95 % and an inferred DNA–DNA hybridization value <70 % when compared to , and with no genome sequence being available. Finally, various phenotypic characteristics distinguish strain 28462 from each of these species. Based on the genotypic and phenotypic results, it is proposed that strain 28462 is a novel species, with the name sp. nov. The type strain is 28462 (=DSM 107591=CCUG 72762).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003489
2019-10-01
2019-10-21
Loading full text...

Full text loading...

References

  1. Whiley RA, Hardie JM. Genus I. Streptococcus Rosenbach 1884, 22AL. In Jones D, De Vos P, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology. The FirmicutesVol. 3 New York, USA: Springer; 2009; pp.655–711
    [Google Scholar]
  2. Mitchell TJ. The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nat Rev Microbiol 2003;1:219–230 [CrossRef][PubMed]
    [Google Scholar]
  3. Feldman C, Anderson R. Epidemiology, virulence factors and management of the pneumococcus. F1000Res 2016;5:2320 [CrossRef][PubMed]
    [Google Scholar]
  4. Musser JM, Shelburne SA 3rd. A decade of molecular pathogenomic analysis of group A Streptococcus. J Clin Invest 2009;119:2455–2463 [CrossRef][PubMed]
    [Google Scholar]
  5. Dermer P, Lee C, Eggert J, Few B. A history of neonatal group B streptococcus with its related morbidity and mortality rates in the United States. J Pediatr Nurs 2004;19:357–363 [CrossRef][PubMed]
    [Google Scholar]
  6. Waller AS. New perspectives for the diagnosis, control, treatment, and prevention of strangles in horses. Vet Clin North Am Equine Pract 2014;30:591–607 [CrossRef][PubMed]
    [Google Scholar]
  7. Haas B, Grenier D. Understanding the virulence of Streptococcus suis: A veterinary, medical, and economic challenge. Med Mal Infect 2018;48:159–166 [CrossRef][PubMed]
    [Google Scholar]
  8. Agnew W, Barnes AC. Streptococcus iniae: an aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination. Vet Microbiol 2007;122:1–15 [CrossRef][PubMed]
    [Google Scholar]
  9. Lyskova P, Vydrzalova M, Mazurova J. Identification and antimicrobial susceptibility of bacteria and yeasts isolated from healthy dogs and dogs with otitis externa. J Vet Med A Physiol Pathol Clin Med 2007;54:559–563 [CrossRef][PubMed]
    [Google Scholar]
  10. Timoney JF, Velineni S, Ulrich B, Blanchard P. Biotypes and ScM types of isolates of Streptococcus canis from diseased and healthy cats. Vet Rec 2017;180:358 [CrossRef][PubMed]
    [Google Scholar]
  11. Zadoks RN, Middleton JR, Mcdougall S, Katholm J, Schukken YH. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J Mammary Gland Biol Neoplasia 2011;16:357–372 [CrossRef][PubMed]
    [Google Scholar]
  12. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  13. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  14. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D et al. Toward an online repository of standard operating procedures (SOPs) for (meta)genomic annotation. OMICS 2008;12:137–141 [CrossRef][PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  16. Nei M. Molecular Evolution and Phylogenetics Kumar S. (editor) New York: Oxford University Press; 2000
    [Google Scholar]
  17. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018;35:1547–1549 [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  19. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  20. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  21. Glazunova OO, Raoult D, Roux V. Partial sequence comparison of the rpoB, sodA, groEL and gyrB genes within the genus Streptococcus. Int J Syst Evol Microbiol 2009;59:2317–2322 [CrossRef][PubMed]
    [Google Scholar]
  22. Poyart C, Quesne G, Coulon S, Berche P, Trieu-Cuot P. Identification of streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase. J Clin Microbiol 1998;36:41–47[PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  24. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  25. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  26. Milinovich GJ, Burrell PC, Pollitt CC, Bouvet A, Trott DJ. Streptococcus henryi sp. nov. and Streptococcus caballi sp. nov., isolated from the hindgut of horses with oligofructose-induced laminitis. Int J Syst Evol Microbiol 2008;58:262–266 [CrossRef][PubMed]
    [Google Scholar]
  27. Vela AI, Casamayor A, Sánchez del Rey V, Domínguez L, Fernández-Garayzábal JF. Streptococcus plurextorum sp. nov., isolated from pigs. Int J Syst Evol Microbiol 2009;59:504–508 [CrossRef][PubMed]
    [Google Scholar]
  28. Vela AI, Perez M, Zamora L, Palacios L, Domínguez L et al. Streptococcus porci sp. nov., isolated from swine sources. Int J Syst Evol Microbiol 2010;60:104–108 [CrossRef][PubMed]
    [Google Scholar]
  29. Vela AI, Mentaberre G, Lavín S, Domínguez L, Fernández-Garayzábal JF. Streptococcus caprae sp. nov., isolated from Iberian ibex (Capra pyrenaica hispanica). Int J Syst Evol Microbiol 2016;66:196–200 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003489
Loading
/content/journal/ijsem/10.1099/ijsem.0.003489
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error