1887

Abstract

A Gram-stain-positive bacterial strain, ZW163, isolated from suancai, a traditional pickle of Heilongjiang province in China, was characterized by a polyphasic approach, including phenotypic characterization, sequence analyses of the 16S rRNA gene and two housekeeping genes (pheS and rpoA), whole genome sequencing and cellular fatty acid composition. Strain ZW163 was phylogenetically related to Lactobacillus sharpeae , Lactobacillus songhuajiangensis , Lactobacillus pantheris and Lactobacillus thailandensis , having 93.8–98.7 % 16S rRNA gene sequence similarities, 76.5–87.1 % pheS gene sequence similarities and 74.3–95.7 % rpoA gene sequence similarities to the type strains of L. sharpeae , L. songhuajiangensis , L. pantheris and L. thailandensis , respectively. Average nucleotide identity and in silico DNA–DNA hybridization values between strain ZW163 and the type strains of L. sharpeae , L. songhuajiangensis , L. pantheris and L. thailandensis were less than 77.7 % and 23.6 % respectively. Based upon the data obtained in the present study, a novel species, Lactobacillus hulanensis sp. nov., is proposed and the type strain is ZW163 (=NCIMB 15193=CCM 8926=CCTCC AB 2019015).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003453
2019-05-23
2019-08-22
Loading full text...

Full text loading...

References

  1. Gu CT, Wang F, Li CY, Liu F, Huo GC. Lactobacillus xiangfangensis sp. nov., isolated from Chinese pickle. Int J Syst Evol Microbiol 2012;62:860–863 [CrossRef][PubMed]
    [Google Scholar]
  2. Gu CT, Li CY, Yang LJ, Huo GC. Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle. Int J Syst Evol Microbiol 2013;63:4094–4099 [CrossRef][PubMed]
    [Google Scholar]
  3. Gu CT, Li CY, Yang LJ, Huo GC. Lactobacillus mudanjiangensis sp. nov., Lactobacillus songhuajiangensis sp. nov. and Lactobacillus nenjiangensis sp. nov., isolated from Chinese traditional pickle and sourdough. Int J Syst Evol Microbiol 2013;63:4698–4706 [CrossRef][PubMed]
    [Google Scholar]
  4. Weiss N, Schillinger U, Laternser M, Kandler O. Lactobacillus sharpeae sp. nov. and Lactobacillus agilis sp. nov., two new species of homofermentative, meso-diaminopimelic acid-containing lactobacilli isolated from sewage. Zbl Bakt Hyg I Abt Orig C 1981;2:242–253
    [Google Scholar]
  5. Liu B, Dong X. Lactobacillus pantheris sp. nov., isolated from faeces of a jaguar. Int J Syst Evol Microbiol 2002;52:1745–1748 [CrossRef][PubMed]
    [Google Scholar]
  6. Tanasupawat S, Pakdeeto A, Thawai C, Yukphan P, Okada S. Identification of lactic acid bacteria from fermented tea leaves (miang) in Thailand and proposals of Lactobacillus thailandensis sp. nov., Lactobacillus camelliae sp. nov., and Pediococcus siamensis sp. nov. J Gen Appl Microbiol 2007;53:7–15 [CrossRef][PubMed]
    [Google Scholar]
  7. An D, Cai S, Dong X. Actinomyces ruminicola sp. nov., isolated from cattle rumen. Int J Syst Evol Microbiol 2006;56:2043–2048 [CrossRef][PubMed]
    [Google Scholar]
  8. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005;151:2141–2150 [CrossRef][PubMed]
    [Google Scholar]
  9. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  10. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  11. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  12. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2007;57:2777–2789 [CrossRef][PubMed]
    [Google Scholar]
  13. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2015;31:587–589 [CrossRef][PubMed]
    [Google Scholar]
  14. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001;29:2607–2618 [CrossRef][PubMed]
    [Google Scholar]
  15. Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 2016;44:W54–W57 [CrossRef][PubMed]
    [Google Scholar]
  16. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 2007;35:W182–W185 [CrossRef][PubMed]
    [Google Scholar]
  17. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  18. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  19. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  20. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  22. Krieg NR, Padgett PJ. Phenotypic and physiological characterization methods. Methods Microbiol 2011;38:15–60
    [Google Scholar]
  23. Miyashita M, Yukphan P, Chaipitakchonlatarn W, Malimas T, Sugimoto M et al. Lactobacillus plajomi sp. nov. and Lactobacillus modestisalitolerans sp. nov., isolated from traditional fermented foods. Int J Syst Evol Microbiol 2015;65:2485–2490 [CrossRef][PubMed]
    [Google Scholar]
  24. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  25. Tak EJ, Kim HS, Lee JY, Kang W, Hyun DW et al. Vagococcus martis sp. nov., isolated from the small intestine of a marten, Martes flavigula. Int J Syst Evol Microbiol 2017;67:3398–3402 [CrossRef][PubMed]
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE, USA: Microbial ID Inc; 1990
    [Google Scholar]
  27. Kandler O, Weiss N. Genus Lactobacillus beijerinck 1901, 212AL. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 2 Baltimore: Williams & Wilkins; pp.1209–1234
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003453
Loading
/content/journal/ijsem/10.1099/ijsem.0.003453
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error