1887

Abstract

A Gram-stain-positive, strictly aerobic, rod-shaped, non-spore-forming, non-motile bacterium, designated strain 2DFWR-13, was isolated from gut of the larva of Protaetia brevitarsis seulensis, in the Republic of Korea. Strain 2DFWR-13 showed high sequence similarities to Lysinimonas kribbensis MSL-13 (97.7 %), Homoserinibacter gongjuensis 5GH26-15 (97.2 %), Microbacterium deminutum KV-483 (97.1 %) and Herbiconiux ginsengi CGMCC 4.3491 (97.1 %). The predominant fatty acids (>10 % of the total fatty acids) were anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. The major menaquinones were MK-13 and MK-12. The peptidoglycan type was type B2 with the diagnostic amino acid d-DAB. The N-acyl type of the murein was glycolyl. The polar lipids consisted of diphosphatidylglycerol, an unidentified glycolipid and an unidentified lipid. The DNA G+C content was 71.5 mol%. Based on its phylogenetic distinctiveness and distinguishing phenotypic characteristics, we conclude that strain 2DFWR-13 represents a novel genus and species of the family Microbacteriaceae , for which the name Protaetiibacter intestinalis gen. nov., sp. nov. is proposed. The type strain of Protaetiibacter intestinalis is 2DFWR-13 (=KACC 19321=NBRC 113050). In addition, an emended description of the genus Lysinimonas Jang et al. 2013 and the reclassification of Lysinimonas kribbensis Jang et al. 2013 as Pseudolysinimonas kribbensis gen. nov., comb. nov. are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003444
2019-05-17
2019-09-22
Loading full text...

Full text loading...

References

  1. Park YH, Suzuki K, Yim DG, Lee KC, Kim E et al. Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA. Antonie van Leeuwenhoek 1993;64:307–313 [CrossRef][PubMed]
    [Google Scholar]
  2. Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009;59:589–608 [CrossRef][PubMed]
    [Google Scholar]
  3. Evtushenko LI, Microbacteriaceae FXI. Family XI. Microbacteriaceae. In Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Suzuki K et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 5 New York: Springer; 2012; pp.807–813
    [Google Scholar]
  4. Hamada M, Saitou S, Tamura T. Arenivirga flava gen. nov., sp. nov., a new member of the family Microbacteriaceae isolated from a mangrove tidal flat. Int J Syst Evol Microbiol 2017;67:3318–3322 [CrossRef][PubMed]
    [Google Scholar]
  5. Sheu SY, Liu LP, Chen WM. Puzihella rosea gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from freshwater. Int J Syst Evol Microbiol 2017;67:2383–2389 [CrossRef][PubMed]
    [Google Scholar]
  6. Zhang L, Chen XL, Hu Q, Ruan ZP, Chen K et al. Huakuichenia soli gen. nov., sp. nov., a new member of the family Microbacteriaceae, isolated from contaminated soil. Int J Syst Evol Microbiol 2016;66:5399–5405 [CrossRef][PubMed]
    [Google Scholar]
  7. Ri Kim Y, Kim TS, Han JH, Joung Y, Park J et al. Allohumibacter endophyticus gen. nov., sp. nov., isolated from the root of wild Artemisia princeps (mugwort). Int J Syst Evol Microbiol 2016;66:1823–1827 [CrossRef][PubMed]
    [Google Scholar]
  8. Zhou X, Nan Guo G, Qi Wang L, Lan Bai S, Hong Li Y. Cnuibacter physcomitrellae gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from the moss of Physcomitrella patens. Int J Syst Evol Microbiol 2016;66:680–688 [CrossRef][PubMed]
    [Google Scholar]
  9. Jang YH, Kim SJ, Tamura T, Hamada M, Weon HY et al. Lysinimonas soli gen. nov., sp. nov., isolated from soil, and reclassification of Leifsonia kribbensis Dastager et al. 2009 as Lysinimonas kribbensis sp. nov., comb. nov. Int J Syst Evol Microbiol 2013;63:1403–1410 [CrossRef][PubMed]
    [Google Scholar]
  10. Dastager SG, Lee JC, Yj J, Park DJ, Kim CJ et al. Leifsonia kribbensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009;59:18–21
    [Google Scholar]
  11. Gregersen T. Rapid method for distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978;5:123–127 [CrossRef]
    [Google Scholar]
  12. Smibert R, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  13. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE, USA: Microbial ID Inc; 1990
    [Google Scholar]
  14. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  15. Hamada M, Tamura T, Yamamura H, Suzuki K, Hayakawa M. Lysinimicrobium mangrovi gen. nov., sp. nov., an actinobacterium isolated from the rhizosphere of a mangrove. Int J Syst Evol Microbiol 2012;62:1731–1735 [CrossRef][PubMed]
    [Google Scholar]
  16. Uchida K, Aida KO. An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 1984;30:131–134 [CrossRef]
    [Google Scholar]
  17. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007;35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  18. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  19. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  24. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10:563–569 [CrossRef][PubMed]
    [Google Scholar]
  25. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44:6614–6624 [CrossRef][PubMed]
    [Google Scholar]
  26. Kim SJ, Ahn JH, Weon HY, Hamada M, Suzuki K et al. Diaminobutyricibacter tongyongensis gen. nov., sp. nov. and Homoserinibacter gongjuensis gen. nov., sp. nov. belong to the family Microbacteriaceae. J Microbiol 2014;52:527–533 [CrossRef][PubMed]
    [Google Scholar]
  27. Jang YH, Kim SJ, Hamada M, Tamura T, Ahn JH et al. Diaminobutyricimonas aerilata gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from an air sample in Korea. J Microbiol 2012;50:1047–1052 [CrossRef][PubMed]
    [Google Scholar]
  28. Kageyama A, Takahashi Y, Omura S. Microbacterium deminutum sp. nov., Microbacterium pumilum sp. nov. and Microbacterium aoyamense sp. nov. Int J Syst Evol Microbiol 2006;56:2113–2117 [CrossRef][PubMed]
    [Google Scholar]
  29. Kim SJ, Lee SS. Amnibacterium kyonggiense gen. nov., sp. nov., a new member of the family Microbacteriaceae. Int J Syst Evol Microbiol 2011;61:155–159 [CrossRef][PubMed]
    [Google Scholar]
  30. Qiu F, Huang Y, Sun L, Zhang X, Liu Z et al. Leifsonia ginsengi sp. nov., isolated from ginseng root. Int J Syst Evol Microbiol 2007;57:405–408 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003444
Loading
/content/journal/ijsem/10.1099/ijsem.0.003444
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error