1887

Abstract

Three Gram-stain-negative, aerobic, non-motile, oxidase- and catalase positive, rod-shaped, pink-coloured bacterial strains, DMA-K-7a, DMA-K-1 and DMG-N-1, were isolated from water sampled at Lake Fertő/Neusiedler See (Hungary). Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the strains form a distinct linage within the family Cytophagaceae of the phylum Bacteroidetes , and their closest relatives are Rhabdobacter roseus R49 (95.66 %) and Dyadobacter sediminis Z12 (95.38 %). The assembled genome of strain DMA-K-7a had a total length of 5.8 Mb and a DNA G+C content of 45.7 mol%. The major isoprenoid quinone was menaquinone-7 (MK-7). The major cellular fatty acids were C16 : 1 ω7c, iso-C15 : 0, C16 : 1 ω5c, C16 : 0 and iso-C17 : 0 3-OH. The polar lipid profile contained phosphatidylethanolamine, phosphatidylserine, an unknown aminolipid, an unknown glycolipid and five unknown lipids. Flexirubin-type pigments were absent. Strain DMA-K-7a (=DSM 106737=NCAIM B.02641) is proposed as the type strain of a new genus and species in the family Cytophagaceae , for which the name Arundinibacter roseus gen. nov., sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003436
2019-05-17
2019-08-25
Loading full text...

Full text loading...

References

  1. Ludwig W, Euzéby J, Whitman WB. Taxonomic outlines of the Phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. In Whitman W. (editor) Bergey’s Manual of Systematic Bacteriology, 4, 2nd. Baltimore: Williams & Wilkins; 2011; pp.21–24
    [Google Scholar]
  2. Stanier RY. Studies on the cytophagas. J Bacteriol 1940;40:619–635[PubMed]
    [Google Scholar]
  3. Larkin JM, Williams PM. Runella slithyformis gen. nov., sp. nov., a curved, nonflexible, pink bacterium. Int J Syst Bacteriol 1978;28:32–36 [CrossRef]
    [Google Scholar]
  4. Sheu SY, Chen YS, Shiau YW, Chen WM. Fluviimonas pallidilutea gen. nov., sp. nov., a new member of the family Cytophagaceae isolated from a freshwater river. Int J Syst Evol Microbiol 2013;63:3861–3867 [CrossRef][PubMed]
    [Google Scholar]
  5. Táncsics A, Kéki Z, Márialigeti K, Schumann P, Tóth EM. Siphonobacter aquaeclarae gen. nov., sp. nov., a novel member of the family 'Flexibacteraceae', phylum Bacteroidetes. Int J Syst Evol Microbiol 2010;60:2567–2571 [CrossRef][PubMed]
    [Google Scholar]
  6. Reddy GS, Garcia-Pichel F. Dyadobacter crusticola sp. nov., from biological soil crusts in the Colorado Plateau, USA and an emended description of the genus Dyadobacter Chelius and Triplett 2000. Int J Syst Evol Microbiol 2005;55:1295–1299 [CrossRef][PubMed]
    [Google Scholar]
  7. Chelius MK, Henn JA, Triplett EW. Runella zeae sp. nov., a novel Gram-negative bacterium from the stems of surface-sterilized Zea mays. Int J Syst Evol Microbiol 2002;52:2061–2063 [CrossRef][PubMed]
    [Google Scholar]
  8. Weon HY, Kim BY, Kwon SW, Park IC, Cha IB et al. Leadbetterella byssophila gen. nov., sp. nov., isolated from cotton-waste composts for the cultivation of oyster mushroom. Int J Syst Evol Microbiol 2005;55:2297–2302 [CrossRef][PubMed]
    [Google Scholar]
  9. Ryu SH, Nguyen TT, Park W, Kim CJ, Jeon CO et al. Runella limosa sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2006;56:2757–2760 [CrossRef][PubMed]
    [Google Scholar]
  10. Lu S, Lee JR, Ryu SH, Chung BS, Choe WS et al. Runella defluvii sp. nov., isolated from a domestic wastewater treatment plant. Int J Syst Evol Microbiol 2007;57:2600–2603 [CrossRef][PubMed]
    [Google Scholar]
  11. McBride MJ, Liu W, Lu X, Zhu Y, Zhang W et al. The family Cytophagaceae. In Rosenberg E, DeLong EF, Sand Lory, Stackebrandt E. (editors) The Prokaryotes – Prokaryotic Biology and Symbiotic Associations, 4th ed. 2014; pp.577–593
    [Google Scholar]
  12. Dinka M, Ágoston-Szabó E, Berczik Árpád, Kutrucz G. Influence of water level fluctuation on the spatial dynamic of the water chemistry at Lake Fertõ/Neusiedler See. Limnologica 2004;34:48–56 [CrossRef]
    [Google Scholar]
  13. Szuróczki S, Kéki Z, Káli S, Lippai A, Márialigeti K et al. Microbiological investigations on the water of a thermal bath at Budapest. Acta Microbiol Immunol Hung 2016;63:229–241 [CrossRef][PubMed]
    [Google Scholar]
  14. Tóth EM, Vengring A, Homonnay ZG, Kéki Z, Spröer C et al. Phreatobacter oligotrophus gen. nov., sp. nov., an alphaproteobacterium isolated from ultrapure water of the water purification system of a power plant. Int J Syst Evol Microbiol 2014;64:839–845 [CrossRef][PubMed]
    [Google Scholar]
  15. Kalwasińska A, Felföldi T, Walczak M, Kosobucki P. Physiology and molecular phylogeny of bacteria isolated from alkaline distillery lime. Pol J Microbiol 2015;64:369–377 [CrossRef][PubMed]
    [Google Scholar]
  16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  17. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  18. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013;41:D590–D596 [CrossRef][PubMed]
    [Google Scholar]
  19. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  20. Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data 2010
    [Google Scholar]
  21. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  22. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013;29:1072–1075 [CrossRef][PubMed]
    [Google Scholar]
  23. Bushnell B. BBMap: a fast, accurate, splice-aware aligner (No. LBNL-7065E). Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States). 2014
  24. Lee I, Chalita M, Ha SM, Na SI, Yoon SH et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017;67:2053–2057 [CrossRef][PubMed]
    [Google Scholar]
  25. Tóth EM, Kéki Z, Makk J, Homonnay ZG, Márialigeti K et al. Nocardioides hungaricus sp. nov., isolated from a drinking water supply system. Int J Syst Evol Microbiol 2011;61:549–553 [CrossRef][PubMed]
    [Google Scholar]
  26. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  27. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  28. Dahal RH, Kim J. Rhabdobacter roseus gen. nov., sp. nov., isolated from soil. Int J Syst Evol Microbiol 2016;66:308–314 [CrossRef][PubMed]
    [Google Scholar]
  29. Tian M, Zhang RG, Han L, Zhao XM, Lv J. Dyadobacter sediminis sp. nov., isolated from a subterranean sediment sample. Int J Syst Evol Microbiol 2015;65:827–832 [CrossRef][PubMed]
    [Google Scholar]
  30. Liu QM, Im WT, Lee M, Yang DC, Lee ST. Dyadobacter ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2006;56:1939–1944 [CrossRef][PubMed]
    [Google Scholar]
  31. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992;8:451–452 [CrossRef][PubMed]
    [Google Scholar]
  32. Chelius MK, Triplett EW. Dyadobacter fermentans gen. nov., sp. nov., a novel gram-negative bacterium isolated from surface-sterilized Zea mays stems. Int J Syst Evol Microbiol 2000;50:751–758 [CrossRef][PubMed]
    [Google Scholar]
  33. Tóth E, Szuróczki S, Kéki Z, Kosztik J, Makk J et al. Brevundimonas balnearis sp. nov., isolated from the well water of a thermal bath. Int J Syst Evol Microbiol 2017;67:1033–1038 [CrossRef][PubMed]
    [Google Scholar]
  34. Tóth E, Szuróczki S, Kéki Z, Bóka K, Szili-Kovács T et al. Gellertiella hungarica gen. nov., sp. nov., a novel bacterium of the family Rhizobiaceae isolated from a spa in Budapest. Int J Syst Evol Microbiol 2017;67:4565–4571 [CrossRef][PubMed]
    [Google Scholar]
  35. Tóth EM, Schumann P, Borsodi AK, Kéki Z, Kovács AL et al. Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol 2008;58:976–981 [CrossRef][PubMed]
    [Google Scholar]
  36. Atlas RM. In Parks LC. (editor) Handbook of Microbiological Media Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
  37. Reichenbach H. The order Cytophagales. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes, 2nd ed.vol. 4 New York: Springer; 1992; pp.3631–3675
    [Google Scholar]
  38. Gosink JJ, Woese CR, Staley JT. Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of 'Flectobacillus glomeratus' as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 1998;48:223–235 [CrossRef][PubMed]
    [Google Scholar]
  39. Lang E, Lapidus A, Chertkov O, Brettin T, Detter JC et al. Complete genome sequence of Dyadobacter fermentans type strain (NS114T). Stand Genomic Sci 2009;1:133–140 [CrossRef]
    [Google Scholar]
  40. Shen L, Liu Y, Yao T, Wang N, Xu B et al. Dyadobacter tibetensis sp. nov., isolated from glacial ice core. Int J Syst Evol Microbiol 2013;63:3636–3639 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003436
Loading
/content/journal/ijsem/10.1099/ijsem.0.003436
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error