1887

Abstract

Phylogenetic analysis based on 16S rRNA gene sequences of the genus Sphingobium showed the presence of four distinguishable clusters, in each of which the species shared almost the same evolutionary distance. They were Sphingobium indicum , Sphinogbium lucknowense, Sphinogbium chinhatense, Sphinogbium francense and Sphinogbium japonicum in cluster I, Sphinogbium barthaii and Sphinogbium fuliginis in cluster II, Sphinogbium hydrophobicum and Sphinogbium xenophagum in cluster III and Sphinogbium czechense and Sphinogbium cupriresistens in cluster IV. The 16S rRNA gene sequence similarities between the species in each cluster were all higher than 98 %. Genome-based average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) relatedness values between the species of each cluster were all higher than the threshold values of 95–96 % ANI and 70 % dDDH for species discrimination, respectively, suggesting that each cluster represents only one species of the genus Sphingobium . Due to priority of publication, S. lucknowense , S. chinhatense , S. francense and S. japonicum should be taken as later heterotypic synonyms of S. indicum , S. barthaii as a later heterotypic synonym of S. fuliginis , S. hydrophobicum as a later heterotypic synonym of S. xenophagum and S. czechense as a later heterotypic synonym of S. cupriresistens . Correspondingly, the descriptions of S. indicum , S. fuliginis , S. xenophagum and S. cupriresistens are also emended based on this study.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003432
2019-05-13
2019-12-09
Loading full text...

Full text loading...

References

  1. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001;51:1405–1417 [CrossRef][PubMed]
    [Google Scholar]
  2. Stolz A. Degradative plasmids from sphingomonads. FEMS Microbiol Lett 2014;350:9–19 [CrossRef][PubMed]
    [Google Scholar]
  3. Stolz A. Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol 2009;81:793–811 [CrossRef][PubMed]
    [Google Scholar]
  4. Aylward FO, McDonald BR, Adams SM, Valenzuela A, Schmidt RA et al. Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol 2013;79:3724–3733 [CrossRef][PubMed]
    [Google Scholar]
  5. Yim MS, Yau YC, Matlow A, So JS, Zou J et al. A novel selective growth medium-PCR assay to isolate and detect Sphingomonas in environmental samples. J Microbiol Methods 2010;82:19–27 [CrossRef][PubMed]
    [Google Scholar]
  6. Révész F, Tóth EM, Kriszt B, Bóka K, Benedek T et al. Sphingobium aquiterrae sp. nov., a toluene, meta- and para-xylene-degrading bacterium isolated from petroleum hydrocarbon-contaminated groundwater. Int J Syst Evol Microbiol 2018;68:2807–2812 [CrossRef][PubMed]
    [Google Scholar]
  7. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  8. Lee I, Chalita M, Ha SM, Na SI, Yoon SH et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017;67:2053–2057 [CrossRef][PubMed]
    [Google Scholar]
  9. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  10. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  11. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  12. Pal R, Bala S, Dadhwal M, Kumar M, Dhingra G et al. Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 2005;55:1965–1972 [CrossRef][PubMed]
    [Google Scholar]
  13. Dadhwal M, Jit S, Kumari H, Lal R. Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. Int J Syst Evol Microbiol 2009;59:3140–3144 [CrossRef][PubMed]
    [Google Scholar]
  14. Garg N, Bala K, Lal R. Sphingobium lucknowense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 2012;62:618–623 [CrossRef][PubMed]
    [Google Scholar]
  15. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  16. Táncsics A, Benedek T, Farkas M, Máthé I, Márialigeti K et al. Sequence analysis of 16S rRNA, gyrB and catA genes and DNA-DNA hybridization reveal that Rhodococcus jialingiae is a later synonym of Rhodococcus qingshengii. Int J Syst Evol Microbiol 2014;64:298–301 [CrossRef][PubMed]
    [Google Scholar]
  17. Maeda AH, Kunihiro M, Ozeki Y, Nogi Y, Kanaly RA. Sphingobium barthaii sp. nov., a high molecular weight polycyclic aromatic hydrocarbon-degrading bacterium isolated from cattle pasture soil. Int J Syst Evol Microbiol 2015;65:2919–2924 [CrossRef][PubMed]
    [Google Scholar]
  18. Chen X, Wang H, Xu J, Song D, Sun G et al. Sphingobium hydrophobicum sp. nov., a hydrophobic bacterium isolated from electronic-waste-contaminated sediment. Int J Syst Evol Microbiol 2016;66:3912–3916 [CrossRef][PubMed]
    [Google Scholar]
  19. Niharika N, Moskalikova H, Kaur J, Khan F, Sedlackova M et al. Sphingobium czechense sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 2013;63:723–728 [CrossRef][PubMed]
    [Google Scholar]
  20. Li L, Liu H, Shi Z, Wang G. Sphingobium cupriresistens sp. nov., a copper-resistant bacterium isolated from copper mine soil, and emended description of the genus Sphingobium. Int J Syst Evol Microbiol 2013;63:604–609 [CrossRef][PubMed]
    [Google Scholar]
  21. Prakash O, Lal R. Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov. Int J Syst Evol Microbiol 2006;56:2147–2152 [CrossRef][PubMed]
    [Google Scholar]
  22. Pal R, Bhasin VK, Lal R. Proposal to reclassify [Sphingomonas] xenophaga Stolz et al. 2000 and [Sphingomonas] taejonensis Lee et al. 2001 as Sphingobium xenophagum comb. nov. and Sphingopyxis taejonensis comb. nov., respectively. Int J Syst Evol Microbiol 2006;56:667–670 [CrossRef][PubMed]
    [Google Scholar]
  23. Stolz A, Schmidt-Maag C, Denner EB, Busse HJ, Egli T et al. Description of Sphingomonas xenophaga sp. nov. for strains BN6T and N, N which degrade xenobiotic aromatic compounds. Int J Syst Evol Microbiol 2000;50:35–41 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003432
Loading
/content/journal/ijsem/10.1099/ijsem.0.003432
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error