1887

Abstract

A marine proteobacterium, designated strain GH1-16, was isolated from a sample of tidal mudflat collected at the seashore of Gangwha Island, Republic of Korea and the taxonomic status was examined by a polyphasic approach. The isolate was Gram-reaction-negative, strictly aerobic, catalase- and oxidase-positive, non-motile, short-rod-shaped and produced yellow-coloured colonies. An absolute requirement for Na was observed. The major respiratory quinone was ubiquinone-10. The major polar lipids consisted of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and sphingoglycolipid. The dominant cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C17 : 1ω6c. The DNA G+C content was 60.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain GH1-16 was closely related to members of the genus Altererythrobacter . The closest relative was Altererythrobacter marensis MSW-14 (97.3 % sequence similarity) followed by Altererythrobacter aquaemixtae JSSK-8 (96.8 %) and Altererythrobacter epoxidivorans JCS350 (96.7 %). The DNA relatedness of strain GH1-16 against its closest relative was 21.8–25.0 %. On the basis of data obtained by a polyphasic taxonomic approach, strain GH1-16 (=KCTC 52845=NBRC 113275) is considered to represent a novel species of the genus Altererythrobacter , for which the name Altererythrobacter lutipelagi sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003414
2019-05-03
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/7/1980.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003414&mimeType=html&fmt=ahah

References

  1. Kwon KK, Woo JH, Yang SH, Kang JH, Kang SG et al. Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int J Syst Evol Microbiol 2007; 57:2207–2211 [View Article][PubMed]
    [Google Scholar]
  2. Jung YT, Park S, Lee JS, Yoon JH. Altererythrobacter aestiaquae sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014; 64:3943–3949 [View Article][PubMed]
    [Google Scholar]
  3. Park SC, Baik KS, Choe HN, Lim CH, Kim HJ et al. Altererythrobacter namhicola sp. nov. and Altererythrobacter aestuarii sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011; 61:709–715 [View Article][PubMed]
    [Google Scholar]
  4. Seo SH, Lee SD. Altererythrobacter marensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2010; 60:307–311 [View Article][PubMed]
    [Google Scholar]
  5. Kang JW, Kim MS, Lee JH, Baik KS, Seong CN et al. Altererythrobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2016; 66:2491–2496 [View Article][PubMed]
    [Google Scholar]
  6. Park S, Jung YT, Choi SJ, Yoon JH. Altererythrobacter aquaemixtae sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2017; 67:3446–3451 [View Article][PubMed]
    [Google Scholar]
  7. Jung YT, Park S, Lee JS, Yoon JH. Altererythrobacter aquiaggeris sp. nov., isolated from water of an Estuary bank. Int J Syst Evol Microbiol 2017; 67:3410–3416 [View Article][PubMed]
    [Google Scholar]
  8. Park S, Jung YT, Park JM, Yoon JH. Altererythrobacter confluentis sp. nov., isolated from water of an estuary environment. Int J Syst Evol Microbiol 2016; 66:4002–4008 [View Article][PubMed]
    [Google Scholar]
  9. Kim JH, Yoon JH, Kim W. Altererythrobacter sediminis sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2016; 66:5424–5429 [View Article][PubMed]
    [Google Scholar]
  10. Jeong SH, Jin HM, Lee HJ, Jeon CO. Altererythrobacter gangjinensis sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2013; 63:971–976 [View Article][PubMed]
    [Google Scholar]
  11. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 24:4876–4882
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  14. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  15. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969 pp. 21–132
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  17. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  18. Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ et al. Genetic Manipulation of Streptomyces. A Laboratory Manual Norwich: John Innes Foundation; 1985
    [Google Scholar]
  19. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  20. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  21. Phillips RW, Wiegel J, Berry CJ, Fliermans C, Peacock AD et al. Kineococcus radiotolerans sp. nov., a radiation-resistant, gram-positive bacterium. Int J Syst Evol Microbiol 2002; 52:933–938 [View Article][PubMed]
    [Google Scholar]
  22. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  23. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp. 173–199
    [Google Scholar]
  24. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related Bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  25. Xue X, Zhang K, Cai F, Dai J, Wang Y et al. Altererythrobacter xinjiangensis sp. nov., isolated from desert sand, and emended description of the genus Altererythrobacter . Int J Syst Evol Microbiol 2012; 62:28–32 [View Article][PubMed]
    [Google Scholar]
  26. Xue H, Piao CG, Guo MW, Wang LF, Fang W et al. Description of Altererythrobacter aerius sp. nov., isolated from air, and emended description of the genus Altererythrobacter . Int J Syst Evol Microbiol 2016; 66:4543–4548 [View Article][PubMed]
    [Google Scholar]
  27. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  28. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.003414
Loading
/content/journal/ijsem/10.1099/ijsem.0.003414
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error