1887

Abstract

A Gram-positive, strictly aerobic actinobacterium, designated BMP B8004, was isolated from desert soil collected in Xinjiang Province, Northwest China. It produced an extensively branched non-fragmenting substrate mycelium, and very scanty aerial mycelium that formed a short hooked chain of arthrospores with a smooth surface. Optimum growth occurred at 28 °C, pH 7.0 and 0 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BMP B8004 formed a distinct phyletic lineage within the genus Actinomadura . It shared the highest 16S rRNA gene sequence similarity to Actinomadura apis IM17-1 (99.2 %) and Actinomadura rifamycini NBRC 14183 (98.6 %). However, it could be distinguished from the two closest strains based on the low levels of DNA–DNA relatedness (52.7±0.7 and 45±1.8 %, respectively). Chemotaxonomic characteristics, including the main phospholipids, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides, the major menaquinones MK-9(H6) and MK-9(H8), the predominant fatty acids iso-C16 : 0, C16 : 0, C18 : 0 10-methyl and C18 : 1ω9c, were also consistent with the properties of the genus Actinomadura . The DNA G+C content of strain BMP B8004 was 71.9 mol%. Based on phenotypic and genotypic features, strain BMP B8004 is considered to represent a novel species of the genus Actinomadura , for which the name Actinomadura deserti sp. nov. is proposed. The type strain is BMP B8004 (=CGMCC 4.7432=KCTC 39998).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002922
2018-08-09
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/2930.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002922&mimeType=html&fmt=ahah

References

  1. Kroppenstedt RM, Goodfellow M. The Family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillospora and Thermomonospora. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotesvol. 3 Archaea Bacteria: Firmicutes, Actinomycetes New York, NY: Springer New York; 2006; pp.682–724
    [Google Scholar]
  2. Lechevalier HA, Lechevalier MP. A critical evaluation of the genera of aerobic actinomycetes. In Prauser H. (editor) The Actinomycetales Jena: VEB Gustav Fischer Verlag; 1968; pp.393–405
    [Google Scholar]
  3. Kroppenstedt RM, Stackebrandt E, Goodfellow M. Taxonomic revision of the actinomycete genera Actinomadura and Microtetraspora. Syst Appl Microbiol 1990;13:148–160 [CrossRef]
    [Google Scholar]
  4. Zhang Z, Wang Y, Ruan J. Reclassification of Thermomonospora and Microtetraspora. Int J Syst Bacteriol 1998;48:411–422 [CrossRef][PubMed]
    [Google Scholar]
  5. Zhang Z, Kudo T, Nakajima Y, Wang Y. Clarification of the relationship between the members of the family Thermomonosporaceae on the basis of 16S rDNA, 16S-23S rRNA internal transcribed spacer and 23S rDNA sequences and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001;51:373–383 [CrossRef][PubMed]
    [Google Scholar]
  6. Miyadoh S, Miyara T. Family Thermomonosporaceae. In The Society for Actinomycetes (editor) Identification Manual of Actinomycetes Tokyo: Business Center for Academic Societies; 2001; pp.281–291
    [Google Scholar]
  7. Zhao J, Guo L, Sun P, Han C, Bai L et al. Actinomadura jiaoheensis sp. nov. and Actinomadura sporangiiformans sp. nov., two novel actinomycetes isolated from muddy soil and emended description of the genus Actinomadura. Antonie van Leeuwenhoek 2015;108:1331–1339 [CrossRef][PubMed]
    [Google Scholar]
  8. Gyobu Y, Miyadoh S. Proposal to transfer Actinomadura carminata to a new subspecies of the genus Nonomuraea as Nonomuraea roseoviolacea subsp. carminata comb. nov. Int J Syst Evol Microbiol 2001;51:881–889 [CrossRef][PubMed]
    [Google Scholar]
  9. Tamura T, Ishida Y, Nozawa Y, Otoguro M, Suzuki K. Transfer of Actinomadura spadix Nonomura and Ohara 1971 to Actinoallomurus spadix gen. nov., comb. nov., and description of Actinoallomurus amamiensis sp. nov., Actinoallomurus caesius sp. nov., Actinoallomurus coprocola sp. nov., Actinoallomurus fulvus sp. nov., Actinoallomurus iriomotensis sp. nov., Actinoallomurus luridus sp. nov., Actinoallomurus purpureus sp. nov. and Actinoallomurus yoronensis sp. nov. Int J Syst Evol Microbiol 2009;59:1867–1874 [CrossRef][PubMed]
    [Google Scholar]
  10. Phongsopitanun W, Tanasupawat S, Suwanborirux K, Ohkuma M, Kudo T. Actinomadura rayongensis sp. nov., isolated from peat swamp forest soil. Int J Syst Evol Microbiol 2015;65:890–895 [CrossRef][PubMed]
    [Google Scholar]
  11. Lahoum A, Bouras N, Verheecke C, Mathieu F, Schumann P et al. Actinomadura adrarensis sp. nov., an actinobacterium isolated from Saharan soil. Int J Syst Evol Microbiol 2016;66:2724–2729 [CrossRef][PubMed]
    [Google Scholar]
  12. Lahoum A, Bouras N, Mathieu F, Schumann P, Spröer C et al. Actinomadura algeriensis sp. nov., an actinobacterium isolated from Saharan soil. Antonie van Leeuwenhoek 2016;109:159–165 [CrossRef][PubMed]
    [Google Scholar]
  13. Wink J, Kroppenstedt RM, Seibert G, Stackebrandt E. Actinomadura namibiensis sp. nov. Int J Syst Evol Microbiol 2003;53:721–724 [CrossRef][PubMed]
    [Google Scholar]
  14. Songsumanus A, Kudo T, Ohkuma M, Phongsopitanun W, Tanasupawat S. Actinomadura montaniterrae sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2016;66:3310–3316 [CrossRef][PubMed]
    [Google Scholar]
  15. Lee DW, Lee SD. Actinomadura scrupuli sp. nov., isolated from rock. Int J Syst Evol Microbiol 2010;60:2647–2651 [CrossRef][PubMed]
    [Google Scholar]
  16. Lee SD. Actinomadura rupiterrae sp. nov., isolated from cliff soil. Int J Syst Evol Microbiol 2012;62:990–995 [CrossRef][PubMed]
    [Google Scholar]
  17. Lee SD. Actinomadura meridiana sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2012;62:217–222 [CrossRef][PubMed]
    [Google Scholar]
  18. Lee SD, Kim SB. Actinomadura darangshiensis sp. nov., isolated from a volcanic cone. Int J Syst Evol Microbiol 2015;65:1431–1436 [CrossRef][PubMed]
    [Google Scholar]
  19. Ara I, Matsumoto A, Bakir MA, Kudo T, Omura S et al. Actinomadura bangladeshensis sp. nov. and Actinomadura chokoriensis sp. nov. Int J Syst Evol Microbiol 2008;58:1653–1659 [CrossRef][PubMed]
    [Google Scholar]
  20. Qin S, Zhao GZ, Li J, Zhu WY, Xu LH et al. Actinomadura flavalba sp. nov., an endophytic actinomycete isolated from leaves of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 2009;59:2453–2457 [CrossRef][PubMed]
    [Google Scholar]
  21. Rachniyom H, Matsumoto A, Indananda C, Duangmal K, Takahashi Y et al. Actinomadura syzygii sp. nov., an endophytic actinomycete isolated from the roots of a jambolan plum tree (Syzygium cumini L. Skeels). Int J Syst Evol Microbiol 2015;65:1946–1949 [CrossRef][PubMed]
    [Google Scholar]
  22. Rachniyom H, Matsumoto A, Inahashi Y, Take A, Takahashi Y et al. Actinomadura barringtoniae sp. nov., an endophytic actinomycete isolated from the roots of Barringtonia acutangula (L.) Gaertn. Int J Syst Evol Microbiol 2018;68:1584–1590 [CrossRef][PubMed]
    [Google Scholar]
  23. Promnuan Y, Kudo T, Ohkuma M, Chantawannakul P. Actinomadura apis sp. nov., isolated from a honey bee (Apis mellifera) hive, and the reclassification of Actinomadura cremea subsp. rifamycini Gauze et al. 1987 as Actinomadura rifamycini (Gauze et al. 1987) sp. nov., comb. nov. Int J Syst Evol Microbiol 2011;61:2271–2277 [CrossRef][PubMed]
    [Google Scholar]
  24. He J, Xu Y, Sahu MK, Tian XP, Nie GX et al. Actinomadura sediminis sp. nov., a marine actinomycete isolated from mangrove sediment. Int J Syst Evol Microbiol 2012;62:1110–1116 [CrossRef][PubMed]
    [Google Scholar]
  25. Ara I, Matsumoto A, Abdul Bakir M, Kudo T, Omura S et al. Actinomadura maheshkhaliensis sp. nov., a novel actinomycete isolated from mangrove rhizosphere soil of Maheshkhali, Bangladesh. J Gen Appl Microbiol 2008;54:335–342 [CrossRef][PubMed]
    [Google Scholar]
  26. Trujillo ME, Goodfellow M. Polyphasic taxonomic study of clinically significant actinomadurae including the description of Actinomadura latina sp.nov. Zentralbl Bakteriol 1997;285:212–233 [CrossRef][PubMed]
    [Google Scholar]
  27. Trujillo ME, Goodfellow M. Numerical phenetic classification of clinically significant aerobic sporoactinomycetes and related organisms. Antonie van Leeuwenhoek 2003;84:39–68 [CrossRef][PubMed]
    [Google Scholar]
  28. Yassin AF, Spröer C, Siering C, Klenk HP. Actinomadura sputi sp. nov., isolated from the sputum of a patient with pulmonary infection. Int J Syst Evol Microbiol 2010;60:149–153 [CrossRef][PubMed]
    [Google Scholar]
  29. Maskey RP, Li F, Qin S, Fiebig HH, Laatsch H. Chandrananimycins A approximately C: production of novel anticancer antibiotics from a marine Actinomadura sp. isolate M048 by variation of medium composition and growth conditions. J Antibiot 2003;56:622–629 [CrossRef][PubMed]
    [Google Scholar]
  30. Mazzei E, Iorio M, Maffioli SI, Sosio M, Donadio S. Characterization of madurastatin C1, a novel siderophore from Actinomadura sp. J Antibiot 2012;65:267–269 [CrossRef][PubMed]
    [Google Scholar]
  31. Igarashi Y, Iida T, Oku N, Watanabe H, Furihata K et al. Nomimicin, a new spirotetronate-class polyketide from an actinomycete of the genus Actinomadura. J Antibiot 2012;65:355–359 [CrossRef][PubMed]
    [Google Scholar]
  32. Hegde V, Patel M, Horan A, Gullo V, Marquez J et al. Macrolactams: a novel class of antifungal antibiotics produced by Actinomadura spp. SCC 1776 and SCC 1777. J Antibiot 1992;45:624–632 [CrossRef][PubMed]
    [Google Scholar]
  33. Igarashi Y, Matsuoka N, In Y, Kataura T, Tashiro E et al. Nonthmicin, a polyether polyketide bearing a halogen-modified tetronate with neuroprotective and antiinvasive activity from Actinomadura sp. Org Lett 2017;19:1406–1409 [CrossRef][PubMed]
    [Google Scholar]
  34. Trujillo ME, Goodfellow M. Genus III. Actinomadura Lechevalier and Lechevalier 1970a, 400AL emend. Kroppenstedt, Stackebrandt and Goodfellow 1990, 156. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI et al. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2012; pp.1940–1948
    [Google Scholar]
  35. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  36. Qin S, Bai JL, Wang Y, Feng WW, Yuan B et al. Tamaricihabitans halophyticus gen. nov., sp. nov., an endophytic actinomycete of the family Pseudonocardiaceae. Int J Syst Evol Microbiol 2015;65:4662–4668 [CrossRef][PubMed]
    [Google Scholar]
  37. Kelly KL. Inter-Society Color Council – National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  38. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  39. Kurup PV, Schmitt JA. Numerical taxonomy of Nocardia. Can J Microbiol 1973;19:1035–1048 [CrossRef][PubMed]
    [Google Scholar]
  40. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  41. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin Strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  42. Cao C, Yuan B, Qin S, Jiang J, Tao F et al. Lentzea pudingi sp. nov., isolated from a weathered limestone sample in a karst area. Int J Syst Evol Microbiol 2017;67:4873–4878 [CrossRef][PubMed]
    [Google Scholar]
  43. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  44. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48:459–470 [CrossRef]
    [Google Scholar]
  45. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  46. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  47. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  48. Qin S, Miao Q, Feng W-W, Wang Y, Zhu X et al. Biodiversity and plant growth promoting traits of culturable endophytic actinobacteria associated with Jatropha curcas L. growing in Panxi dry-hot valley soil. Appl Soil Ecol 2015;93:47–55 [CrossRef]
    [Google Scholar]
  49. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  50. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  51. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  52. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962;5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  53. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  54. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002922
Loading
/content/journal/ijsem/10.1099/ijsem.0.002922
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error