1887

Abstract

Strain MVW-1, isolated from a freshwater spring in Taiwan, was characterized by using a polyphasic taxonomy approach. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain MVW-1 belongs to the genus Paracoccus and has the highest levels of sequence similarity to Paracoccus caeni MJ17 (97.6 %), Paracoccus sediminis CMB17 (97.4 %), Paracoccus angustae E6 (97.3 %) and Paracoccus acridae SCU-M53 (97.1 %). Cells were Gram-stain-negative, aerobic, poly-β-hydroxybutyrate-accumulating, non-motile, rod-shaped and formed light orange-coloured colonies. Optimal growth occurred at 20–25 °C, pH 6–7, and in the presence of 0–3 % NaCl. The major fatty acid of strain MVW-1 was C18 : 1ω7c. The polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol, an unidentified glycolipid, an unidentified aminolipid and three unidentified phospholipids. The predominant polyamines were spermidine, putrescine and cadaverine. The only isoprenoid quinone was Q-10. The genomic DNA G+C content of strain MVW-1 was 63.4 mol%. Strain MVW-1 exhibited less than 35 % DNA–DNA relatedness to P. caeni MJ17, P. angustae E6, P. sediminis CMB17 and P. acridae SCU-M53. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain MVW-1 should be classified in a novel species of the genus Paracoccus , for which the name Paracoccus fontiphilus sp. nov. is proposed. The type strain is MVW-1 (=BCRC 80974=LMG 29554=KCTC 52239).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002793
2018-05-03
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/6/2054.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002793&mimeType=html&fmt=ahah

References

  1. Davis DH, Doudoroff M, Stanier RY, Mandel M. Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 1969; 19: 375– 390 [CrossRef]
    [Google Scholar]
  2. Ludwig W, Mittenhuber G, Friedrich CG. Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int J Syst Bacteriol 1993; 43: 363– 367 [CrossRef] [PubMed]
    [Google Scholar]
  3. Katayama Y, Hiraishi A, Kuraishi H. Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology 1995; 141: 1469– 1477 [CrossRef] [PubMed]
    [Google Scholar]
  4. Liu ZP, Wang BJ, Liu XY, Dai X, Liu YH et al. Paracoccus halophilus sp. nov., isolated from marine sediment of the South China Sea, China, and emended description of genus Paracoccus Davis 1969. Int J Syst Evol Microbiol 2008; 58: 257– 261 [CrossRef] [PubMed]
    [Google Scholar]
  5. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  6. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997; 47: 249– 251 [CrossRef] [PubMed]
    [Google Scholar]
  7. Chen WM, Laevens S, Lee TM, Coenye T, de Vos P et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001; 51: 1729– 1735 [CrossRef] [PubMed]
    [Google Scholar]
  8. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  9. Cole JR, Wang Q, Cardenas E, Fish J, Chai B et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009; 37: D141– D145 [CrossRef] [PubMed]
    [Google Scholar]
  10. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  11. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  12. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947– 2948 [CrossRef] [PubMed]
    [Google Scholar]
  13. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983; [Crossref]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  16. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18: 1– 32 [CrossRef]
    [Google Scholar]
  17. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.5c Distributed by the author Department of Genome Sciences, University of Washington, Seattle, USA; 1993
    [Google Scholar]
  18. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61: 3756– 3758 [PubMed]
    [Google Scholar]
  19. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp. 19– 33
    [Google Scholar]
  20. Schlegel HG, Lafferty R, Krauss I. The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Mikrobiol 1970; 71: 283– 294 [CrossRef] [PubMed]
    [Google Scholar]
  21. Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 1999; 171: 73– 80 [CrossRef] [PubMed]
    [Google Scholar]
  22. Reichenbach H. The order Cytophagales. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes, a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. New York, NY: Springer; 1992; pp. 3631– 3675
    [Google Scholar]
  23. Schmidt K, Connor A, Britton G. Analysis of pigments: carotenoids and related polyenes. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp. 403– 461
    [Google Scholar]
  24. Chen MH, Sheu SY, Chen CA, Wang JT, Chen WM. Roseivivax isoporae sp. nov., isolated from a reef-building coral, and emended description of the genus Roseivivax. Int J Syst Evol Microbiol 2012; 62: 1259– 1264 [CrossRef] [PubMed]
    [Google Scholar]
  25. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp. 309– 329
    [Google Scholar]
  26. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematic. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp. 330– 393
    [Google Scholar]
  27. Wen CM, Tseng CS, Cheng CY, Li YK. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002; 35: 213– 219 [CrossRef] [PubMed]
    [Google Scholar]
  28. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50: 1861– 1868 [CrossRef] [PubMed]
    [Google Scholar]
  29. Chang SC, Wang JT, Vandamme P, Hwang JH, Chang PS et al. Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol 2004; 27: 43– 49 [CrossRef] [PubMed]
    [Google Scholar]
  30. Nokhal TH, Schlegel HG. Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 1983; 33: 26– 37 [CrossRef]
    [Google Scholar]
  31. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  32. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  33. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  34. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp. 121– 161
    [Google Scholar]
  35. Dittmer JC, Lester RL. A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 1964; 5: 126– 127 [PubMed]
    [Google Scholar]
  36. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11: 1– 8 [CrossRef]
    [Google Scholar]
  37. Busse HJ, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47: 698– 708 [CrossRef]
    [Google Scholar]
  38. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp. 265– 309
    [Google Scholar]
  39. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  40. Lee M, Woo SG, Park G, Kim MK. Paracoccus caeni sp. nov., isolated from sludge. Int J Syst Evol Microbiol 2011; 61: 1968– 1972 [CrossRef] [PubMed]
    [Google Scholar]
  41. Sun X, Luo P, Li M. Paracoccus angustae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65: 3469– 3475 [CrossRef] [PubMed]
    [Google Scholar]
  42. Pan J, Sun C, Zhang XQ, Huo YY, Zhu XF et al. Paracoccus sediminis sp. nov., isolated from Pacific Ocean marine sediment. Int J Syst Evol Microbiol 2014; 64: 2512– 2516 [CrossRef] [PubMed]
    [Google Scholar]
  43. Zhang S, Gan L, Qin Q, Long X, Zhang Y et al. Paracoccus acridae sp. nov., isolated from the insect Acrida cinerea living in deserted cropland. Int J Syst Evol Microbiol 2016; 66: 3492– 3497 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002793
Loading
/content/journal/ijsem/10.1099/ijsem.0.002793
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error