1887

Abstract

A novel actinobacterium, designated strain NEAU-SW11, was isolated from soil collected from Binxian, Heilongjiang province, north China. The isolate was found to have chemical and morphological properties of the genus Streptacidiphilus , with the highest sequence similarities to Streptacidiphilus anmyonensis JCM 16223 (98.1 %), Streptacidiphilus jiangxiensis JCM 12277 (97.8 %), Streptacidiphilus melanogenes JCM 16224 (97.6 %) and Streptacidiphilus rugosus JCM 16225 (97.4 %) and it phylogenetically clustered with these four strains. The cell wall contained ll-diaminopimelic acid as the major diamino acid and the whole-cell hydrolysates were rhamnose, ribose, glucose and galactose. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside and two unidentified phospholipids. The predominant menaquinones were MK-9(H8) and MK-9(H6). The major fatty acids were C16 : 0, anteiso-C17 : 0, C14 : 0 and C15 : 0. The DNA G+C content was 71.0 mol%. However, DNA–DNA hybridization, physiological and biochemical data showed that strain NEAU-SW11 could be distinguished from its closest relatives. Therefore, strain NEAU-SW11 represents a novel species of the genus Streptacidiphilus , for which the name Streptacidiphilus monticola sp. nov. is proposed. The type strain is NEAU-SW11 (=CGMCC 4.7427=DSM 105744).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002751
2018-04-05
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1757.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002751&mimeType=html&fmt=ahah

References

  1. Kim SB, Lonsdale J, Seong CN, Goodfellow M. Streptacidiphilus gen. nov., acidophilic actinomycetes with wall chemotype I and emendation of the family Streptomycetaceae (Waksman and Henrici (1943)AL) emend. Rainey et al. 1997. Antonie van Leeuwenhoek 2003; 83: 107– 116 [CrossRef] [PubMed]
    [Google Scholar]
  2. Golinska P, Dahm H, Goodfellow M. Streptacidiphilus toruniensis sp. nov., isolated from a pine forest soil. Antonie van Leeuwenhoek 2016; 109: 1583– 1591 [CrossRef] [PubMed]
    [Google Scholar]
  3. Cho SH, Han JH, Ko HY, Kim SB. Streptacidiphilus anmyonensis sp. nov., Streptacidiphilus rugosus sp. nov. and Streptacidiphilus melanogenes sp. nov., acidophilic actinobacteria isolated from Pinus soils. Int J Syst Evol Microbiol 2008; 58: 1566– 1570 [CrossRef] [PubMed]
    [Google Scholar]
  4. Williams S, Davies F, Mayfield C, Khan M. Studies on the ecology of actinomycetes in soil II. The pH requirements of streptomycetes from two acid soils. Soil Biology and Biochemistry 1971; 3: 187– 195 [CrossRef]
    [Google Scholar]
  5. Wang L, Huang Y, Liu Z, Goodfellow M, Rodríguez C. Streptacidiphilus oryzae sp. nov., an actinomycete isolated from rice-field soil in Thailand. Int J Syst Evol Microbiol 2006; 56: 1257– 1261 [CrossRef] [PubMed]
    [Google Scholar]
  6. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129: 1743– 1813 [CrossRef] [PubMed]
    [Google Scholar]
  7. Williams ST, Lanning S, Wellington EMH. Ecology of actinomycetes. In Goodfellow M, Mordarski M, Williams ST. (editors) The Biology of Actinomycetes London: Academic Press; 1984; pp. 481– 528
    [Google Scholar]
  8. Zheng W, Li D, Zhao J, Liu C, Zhao Y et al. Promicromonospora soli sp. nov., a novel actinomycete isolated from soil. Int J Syst Evol Microbiol 2017; 67: 3829– 3833 [CrossRef] [PubMed]
    [Google Scholar]
  9. Qin S, Li J, Zhang YQ, Zhu WY, Zhao GZ et al. Plantactinospora mayteni gen. nov., sp. nov., a member of the family Micromonosporaceae. Int J Syst Evol Microbiol 2009; 59: 2527– 2533 [CrossRef] [PubMed]
    [Google Scholar]
  10. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
    [Google Scholar]
  11. Waksman SA. The Actinomycetes. In A Summary of Current Knowledge New York: Ronald; 1967
    [Google Scholar]
  12. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57: 141– 145 [PubMed]
    [Google Scholar]
  13. Waksman SA. The Actinomycetes. In Classification, Identification and Descriptions of Genera and Speciesvol. 2 Baltimore: Williams and Wilkins; 1961
    [Google Scholar]
  14. Kelly KL. Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors published in US. 1964
  15. Xie QY, Lin HP, Li L, Brown R, Goodfellow M et al. Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie van Leeuwenhoek 2012; 102: 1– 7 [CrossRef] [PubMed]
    [Google Scholar]
  16. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  17. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24: 54– 63 [CrossRef]
    [Google Scholar]
  18. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1993; 43: 805– 812 [CrossRef]
    [Google Scholar]
  19. Mckerrow J, Vagg S, Mckinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000; 30: 178– 182 [CrossRef] [PubMed]
    [Google Scholar]
  20. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete taxonomy (special publicationvol. 6 Arlington: Society of Industrial Microbiology; 1980; pp. 227– 291
    [Google Scholar]
  21. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  22. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical methods in bacterial systematics Academic Press: London; 1985; pp. 267– 284
    [Google Scholar]
  23. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16: 176– 178
    [Google Scholar]
  24. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014; 105: 307– 315 [CrossRef] [PubMed]
    [Google Scholar]
  25. Xiang W, Liu C, Wang X, du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61: 1165– 1169 [CrossRef] [PubMed]
    [Google Scholar]
  26. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S et al. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000; 50: 2031– 2036 [CrossRef] [PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  32. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  33. Mandel M, Marmur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968; 12: 195– 206 [Crossref]
    [Google Scholar]
  34. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
    [Google Scholar]
  35. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4: 184– 192 [CrossRef] [PubMed]
    [Google Scholar]
  36. Thomas EA, Alvarez CE, Sutcliffe JG. Evolutionarily distinct classes of S27 ribosomal proteins with differential mRNA expression in rat hypothalamus. J Neurochem 2000; 74: 2259– 2267 [CrossRef] [PubMed]
    [Google Scholar]
  37. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002751
Loading
/content/journal/ijsem/10.1099/ijsem.0.002751
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error