1887

Abstract

A Gram-stain-negative, oxidase-negative and catalase-negative, motile, rod-shaped bacterial strain, designated PCS8, hosted by the ciliate was investigated by using a polyphasic approach. Strain PCS8 was observed to be able to grow at 12–44 °C (optimum, 36–37 °C), at pH 6.0–10.0 (optimum, 7.0) and in the presence of 0–3 % NaCl (optimum, 1–2 %). It could hydrolyse starch and aesculin and produce acid from -sorbitol, -inositol, glycerol and -rhamnose. The sequence similarity of the new isolate was 96.9 % with respect to and 96.3 % with respect to . Phylogenetically, strain PCS8 falls within the cluster comprising the species. The predominant cellular fatty acids of strain PCS8 were C (35.8 %), summed feature 3 (Cω7 and/or Cω6; 35.1 %) and summed feature 8 (Cω7 and/or Cω6; 10.8 %). This novel strain also contained various fatty acids that are not detected in other members of the genus , such as C 3-OH, Cω9 and summed feature 5 (Cω6,9 and/or C ante). Strain PCS8 contained ubiquinone-8 as the sole respiratory quinone and phosphatidylethanolamine and phosphatidylglycerol as major polar lipids. The G+C content of the genomic DNA of the type strain was 66.5 mol%. Based on the distinct phenotypic, phylogenetic, chemotaxonomic and G+C content results, strain PCS8 represents a currently undescribed species within the genus in the family , for which we suggest the name sp. nov. with the type strain PCS8 (=KCTC 62038=JCM 32226). An emended description of the genus is also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002746
2018-06-01
2021-08-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/6/1845.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002746&mimeType=html&fmt=ahah

References

  1. Martin-Carnahan A, Joseph SW. Order XII. Aeromonadales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 2 The Proteobacteria, part B, The Gammaproteobacteria New York: Springer; 2005 pp. 556–580 [Crossref]
    [Google Scholar]
  2. Saha P, Chakrabarti T. Aeromonas sharmana sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 2006; 56:1905–1909 [View Article][PubMed]
    [Google Scholar]
  3. Saavedra MJ, Figueras MJ, Martínez-Murcia AJ. Updated phylogeny of the genus Aeromonas . Int J Syst Evol Microbiol 2006; 56:2481–2487 [View Article][PubMed]
    [Google Scholar]
  4. Martínez-Murcia AJ, Figueras MJ, Saavedra MJ, Stackebrandt E. The recently proposed species Aeromonas sharmana sp. nov., isolate GPTSA-6T, is no a member of the genus Aeromonas . Int Microbiol 2007; 10:61–64[PubMed]
    [Google Scholar]
  5. Miñana-Galbis D, Urbizu-Serrano A, Farfán M, Fusté MC, Lorén JG. Phylogenetic analysis and identification of Aeromonas species based on sequencing of the cpn60 universal target. Int J Syst Evol Microbiol 2009; 59:1976–1983 [View Article][PubMed]
    [Google Scholar]
  6. Padakandla SR, Chae JC. Reclassification of Aeromonas sharmana to a new genus as Pseudaeromonas sharmana gen. nov., comb. nov., and description of Pseudaeromonas pectinilytica sp. nov. isolated from a freshwater stream. Int J Syst Evol Microbiol 2017; 67:1018–1023 [View Article][PubMed]
    [Google Scholar]
  7. Ehrenberg CG. Dritter beitrag zur erkenntniss grosser organisation in der richtung des kleinsten raumes. Abh Dt Akad Wiss Berl Jahr 1833145–336
    [Google Scholar]
  8. Soldo AT. Cultivation of two strains of killer Paramecium aurelia in axenic medium. Proc Soc Exp Biol Med 1960; 105:612–615 [View Article]
    [Google Scholar]
  9. Soldo AT, Godoy GA, Van Wagtendonk WJ. Growth of particle-bearing and particle-free Paramecium aurelia in axenic culture. J Protozool 1966; 13:492–497 [View Article]
    [Google Scholar]
  10. Barna I, Weis DS. The utilization of bacteria as food for Paramecium bursaria . Trans Am Microsc Soc 1973; 92:434–440 [View Article][PubMed]
    [Google Scholar]
  11. Weis DS. A medium for the axenic culture of Chlorella-bearing Paramecium bursaria in the light. Trans Am Microsc Soc 1975; 94:109–117 [View Article][PubMed]
    [Google Scholar]
  12. Soldo AT, Merlin EJ. The cultivation of symbiote-free marine ciliates in axenic medium. J Protozool 1972; 19:519–524 [View Article]
    [Google Scholar]
  13. Vannini C, Rosati G, Verni F, Petroni G. Identification of the bacterial endosymbionts of the marine ciliate Euplotes magnicirratus (Ciliophora, Hypotrichia) and proposal of 'Candidatus Devosia euplotis'. Int J Syst Evol Microbiol 2004; 54:1151–1156 [View Article][PubMed]
    [Google Scholar]
  14. MacFaddin JF. Biochemical Tests for the Identification of Medical Bacteria Baltimore, MD: Williams and Wilkins Company; 1972
    [Google Scholar]
  15. Leifson E. Staining, shape and arrangement of bacterial flagella. J Bacteriol 1951; 62:377–389[PubMed]
    [Google Scholar]
  16. Taylor WI, Achanzar D. Catalase test as an aid to the identification of Enterobacteriaceae . Appl Microbiol 1972; 24:58–61[PubMed]
    [Google Scholar]
  17. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article][PubMed]
    [Google Scholar]
  18. Isenberg HD. Clinical Microbiology Procedures Handbook Washington, DC: American Society for Microbiology; 1992
    [Google Scholar]
  19. Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC et al. Color Atlas and Textbook of Diagnostic Microbiology, 4th ed. Philadelphia: J. B. Lippincott Company; 1992
    [Google Scholar]
  20. Cowan ST, Cowan SKJ. Steel's Manual for the Identification of Medical Bacteria , 3rd ed. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  21. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  22. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496 [View Article][PubMed]
    [Google Scholar]
  23. Boscaro V, Vannini C, Fokin SI, Verni F, Petroni G. Characterization of "Candidatus Nebulobacter yamunensis" from the cytoplasm of Euplotes aediculatus (Ciliophora, Spirotrichea) and emended description of the family Francisellaceae . Syst Appl Microbiol 2012; 35:432–440 [View Article][PubMed]
    [Google Scholar]
  24. Gong J, Qing Y, Guo X, Warren A. "Candidatus Sonnebornia yantaiensis", a member of candidate division OD1, as intracellular bacteria of the ciliated protist Paramecium bursaria (Ciliophora, Oligohymenophorea). Syst Appl Microbiol 2014; 37:35–41 [View Article][PubMed]
    [Google Scholar]
  25. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  28. Edwards AWF, Cavalli-Sforza LL. The reconstruction of evolution. Ann Hum Genet 226 (Lond) 27:105; and Heredity 1963;18:553. (Abstract)
  29. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  30. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article][PubMed]
    [Google Scholar]
  31. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003; 19:1572–1574 [View Article][PubMed]
    [Google Scholar]
  32. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  33. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  34. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE, USA: MIDI; 2001
    [Google Scholar]
  35. Padakandla SR, Lee GW, Chae JC. Paenibacillus gelatinilyticus sp. nov. a psychrotolerant bacterium isolated from a reclaimed soil and amended description of Paenibacillus shenyangensis . Antonie van Leeuwenhoek 2015; 108:1197–1203 [View Article][PubMed]
    [Google Scholar]
  36. Tamaoka J, Fujimura YK, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Microbiol 1983; 54:31–36[PubMed]
    [Google Scholar]
  37. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  38. Foissner W, Berger H, Kohmann F. Taxonomische und ökologische revision der ciliaten des saprobiensystems. Band III: Hymenostomata, Prostomatida, Nassulida. Informationsberichte des bayer. Landesamentes fur wasserwirtschaft 1994 pp. 112–128
    [Google Scholar]
  39. Stackebrandt E, Ebers J. Taxonomic parameters revisited:tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002746
Loading
/content/journal/ijsem/10.1099/ijsem.0.002746
Loading

Data & Media loading...

Supplements

Supplementary File 2

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error