1887

Abstract

A novel Gram-stain-negative bacterium, designated strain CY02, was isolated from sediment of the Yellow Sea. Cells of CY02 were aerobic, coccus or short rods. Growth occurred at 5–42 °C (optimum, 35 °C), pH 6–10 (optimum, 8.0) and 0.5–9.0 % NaCl (optimum, 1.5–3.0 %). Phylogenetic analysis of 16S rRNA gene sequences revealed that CY02 was a member of the family Rhodobacteraceae and exhibited less than 95 % sequence similarities with the closely related type strains of the family Rhodobacteraceae . The genomic DNA G+C content of CY02 was 57.5 mol%. The major respiratory quinone was ubiquinone-10 (Q-10). The polar lipids consisted of phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, three unidentified lipids, one unidentified phospholipid and one unidentified aminolipid. The predominant cellular fatty acids were C18 : 1ω7c (57.6 %), 11-methyl C18 : 1ω7c (22.8 %) and C16 : 0 (10.6 %). Based on the results of morphological, physiological, biochemical, chemotaxonomic, genotypic and phylogenetic analyses, strain CY02 represents a novel species of a novel genus of the family Rhodobacteraceae , for which the name Neptunicoccus sediminis gen. nov., sp. nov. is proposed. The type strain of Neptunicoccus sediminis is CY02 (=CCTCC AB 2015430=KCTC 42985=NBRC 111872=MCCC 1K03518).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002728
2018-03-26
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1702.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002728&mimeType=html&fmt=ahah

References

  1. Garrity GM, Bell JA, Lilburn T. Family I. Rhodobacteraceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2005; pp. 161
    [Google Scholar]
  2. Imhoff JF. Quinones of phototrophic purple bacteria. FEMS Microbiol Lett 1984; 25: 85– 89 [CrossRef]
    [Google Scholar]
  3. Srinivas TN, Kumar PA, Sasikala C, Ramana C, Imhoff JF. Rhodobacter vinaykumarii sp. nov., a marine phototrophic alphaproteobacterium from tidal waters, and emended description of the genus Rhodobacter. Int J Syst Evol Microbiol 2007; 57: 1984– 1987 [CrossRef] [PubMed]
    [Google Scholar]
  4. Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol 2005; 71: 5665– 5677 [CrossRef] [PubMed]
    [Google Scholar]
  5. Hwang CY, Cho BC. Ponticoccus litoralis gen. nov., sp. nov., a marine bacterium in the family Rhodobacteraceae. Int J Syst Evol Microbiol 2008; 58: 1332– 1338 [CrossRef] [PubMed]
    [Google Scholar]
  6. Hwang CY, Bae GD, Yih W, Cho BC. Marivita cryptomonadis gen. nov., sp. nov. and Marivita litorea sp. nov., of the family Rhodobacteraceae, isolated from marine habitats. Int J Syst Evol Microbiol 2009; 59: 1568– 1575 [CrossRef] [PubMed]
    [Google Scholar]
  7. Chen Z, Zhang J, Lei X, Lai Q, Yang L et al. Mameliella phaeodactyli sp. nov., a member of the family Rhodobacteraceae isolated from the marine algae Phaeodactylum tricornutum. Int J Syst Evol Microbiol 2015; 65: 1617– 1621 [CrossRef] [PubMed]
    [Google Scholar]
  8. Zhang G, Yang Y, Wang S, Sun Z, Jiao K. Alkalimicrobium pacificum gen. nov., sp. nov., a marine bacterium in the family Rhodobacteraceae. Int J Syst Evol Microbiol 2015; 65: 2453– 2458 [CrossRef] [PubMed]
    [Google Scholar]
  9. Zhang YJ, Zhao JR, Zhang XY, Chen GZ, Zhou MY et al. Euzebyella marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2017; 67: 920– 924 [CrossRef] [PubMed]
    [Google Scholar]
  10. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 2007; pp. 330– 390
    [Google Scholar]
  11. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  12. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  14. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  16. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20: 265– 272 [CrossRef] [PubMed]
    [Google Scholar]
  17. Murray RGE, Doetsch RN, Robinow F. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 21– 41
    [Google Scholar]
  18. Zhang L, Wang Y, Liang J, Song Q, Zhang XH. Degradation properties of various macromolecules of cultivable psychrophilic bacteria from the deep-sea water of the South Pacific Gyre. Extremophiles 2016; 20: 663– 671 [CrossRef] [PubMed]
    [Google Scholar]
  19. Wu YH, Xu L, Zhou P, Wang CS, Oren A et al. Brevirhabdus pacifica gen. nov., sp. nov., isolated from deep-sea sediment in a hydrothermal vent field. Int J Syst Evol Microbiol 2015; 64: 3645– 3651 [Crossref]
    [Google Scholar]
  20. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19: 161– 207 [Crossref]
    [Google Scholar]
  21. Wang Y, Yu M, Liu Y, Yang X, Zhang XH. Bacterioplanoides pacificum gen. nov., sp. nov., isolated from seawater of South Pacific Gyre. Int J Syst Evol Microbiol 2016; 66: 5010– 5015 [CrossRef] [PubMed]
    [Google Scholar]
  22. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV, Kim SB. Amylibacter ulvae sp. nov., a new alphaproteobacterium isolated from the Pacific green alga Ulva fenestrata. Arch Microbiol 2016; 198: 251– 256 [CrossRef] [PubMed]
    [Google Scholar]
  23. Teramoto M, Nishijima M. Amylibacter marinus gen. nov., sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2014; 64: 4016– 4020 [CrossRef] [PubMed]
    [Google Scholar]
  24. Kim YO, Park S, Kim H, Park DS, Nam BH et al. Halocynthiibacter namhaensis gen. nov., sp. nov., a novel alphaproteobacterium isolated from sea squirt Halocynthia roretzi. Antonie van Leeuwenhoek 2014; 105: 881– 889 [CrossRef] [PubMed]
    [Google Scholar]
  25. Park S, Park JM, Kang CH, Yoon JH. Aliiroseovarius pelagivivens gen. nov., sp. nov., isolated from seawater, and reclassification of three species of the genus Roseovarius as Aliiroseovarius crassostreae comb. nov., Aliiroseovarius halocynthiae comb. nov. and Aliiroseovarius sediminilitoris comb. nov. Int J Syst Evol Microbiol 2015; 65: 2646– 2652 [CrossRef] [PubMed]
    [Google Scholar]
  26. Park S, Yoon JH. Roseovarius sediminilitoris sp. nov., isolated from seashore sediment. Int J Syst Evol Microbiol 2013; 63: 1741– 1745 [CrossRef] [PubMed]
    [Google Scholar]
  27. Liu K, Zong R, Li Q, Fu Y, Xu Y et al. Oceaniovalibus guishaninsula gen. nov., sp. nov., a marine bacterium of the family Rhodobacteraceae. Curr Microbiol 2012; 64: 385– 391 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002728
Loading
/content/journal/ijsem/10.1099/ijsem.0.002728
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error