1887

Abstract

A Gram-stain-positive, facultatively aerobic, spore-forming, oxidase-positive, catalase- and DNase-negative, rod-shaped and motile bacterial strain, AR23208, was isolated from the gut of a cinereous vulture (Aegypius monachus), collected at Seoul Grand Park Zoo (Republic of Korea). Strain AR23208 grew optimally at 25–30 °C, at pH 7 and in the absence of NaCl. Phylogenetic analysis revealed that strain AR23208 shared 98.2 and 97.1 % 16S rRNA gene sequence similarity with Tumebacillus algifaecis THMBR28 and Tumebacillus lipolyticus NIO-S10, respectively. The predominant fatty acids (>10 %) of strain AR23208 were iso-C15 : 0, summed feature 4 (anteiso-C17 : 1 B and/or iso-C17 : 1 I) and anteiso-C15 : 0 and the primary isoprenoid quinone was menaquinone-7. The polar lipids were phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, six unidentified phospholipids, an unidentified aminophospholipid and ten unidentified lipids. The sugar components of the cell wall peptidoglycan were ribose and arabinose. The amino acids of the cell wall peptidoglycan were l-alanine, aspartic acid, meso-diaminopimelic acid, l-glutamic acid, glycine and l-lysine. The OrthoANI value based on the complete genome sequence of strain AR23208 and the closest related strain, T. algifaecis THMBR28, was 80.4 %. The genomic DNA G+C content of strain AR23208 was 56.0 mol%. Based on the data presented in the current study, strain AR23208 is considered to represent a novel species of the genus Tumebacillus , for which the name Tumebacillus avium sp. nov. is proposed. The type strain is AR23208 (=KCTC 33929=JCM 32188).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002725
2018-03-21
2019-08-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1659.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002725&mimeType=html&fmt=ahah

References

  1. Sekercioglu CH. Increasing awareness of avian ecological function. Trends Ecol Evol 2006; 21: 464– 471 [CrossRef] [PubMed]
    [Google Scholar]
  2. Blumstein DT, Rangchi TN, Briggs T, de Andrade FS, Natterson-Horowitz B. A Systematic review of carrion eaters' adaptations to avoid sickness. J Wildl Dis 2017; 53: 577– 581 [CrossRef] [PubMed]
    [Google Scholar]
  3. Winsor DK, Bloebaum AP, Mathewson JJ. Gram-negative, aerobic, enteric pathogens among intestinal microflora of wild turkey vultures (Cathartes aura) in west central Texas. Appl Environ Microbiol 1981; 42: 1123– 1124 [PubMed]
    [Google Scholar]
  4. Roggenbuck M, Bærholm Schnell I, Blom N, Bælum J, Bertelsen MF et al. The microbiome of New World vultures. Nat Commun 2014; 5: 5498 [CrossRef] [PubMed]
    [Google Scholar]
  5. Steven B, Chen MQ, Greer CW, Whyte LG, Niederberger TD. Tumebacillus permanentifrigoris gen. nov., sp. nov., an aerobic, spore-forming bacterium isolated from Canadian high Arctic permafrost. Int J Syst Evol Microbiol 2008; 58: 1497– 1501 [CrossRef] [PubMed]
    [Google Scholar]
  6. Baek SH, Cui Y, Kim SC, Cui CH, Yin C et al. Tumebacillus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2011; 61: 1715– 1719 [CrossRef] [PubMed]
    [Google Scholar]
  7. Wang Q, Xie N, Qin Y, Shen N, Zhu J et al. Tumebacillus flagellatus sp. nov., an α-amylase/pullulanase-producing bacterium isolated from cassava wastewater. Int J Syst Evol Microbiol 2013; 63: 3138– 3142 [CrossRef] [PubMed]
    [Google Scholar]
  8. Wu YF, Zhang B, Xing P, Wu QL, Liu SJ. Tumebacillus algifaecis sp. nov., isolated from decomposing algal scum. Int J Syst Evol Microbiol 2015; 65: 2194– 2198 [CrossRef] [PubMed]
    [Google Scholar]
  9. Her J, Srinivasan S, Lee SS. Tumebacillus luteolus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65: 4107– 4112 [CrossRef] [PubMed]
    [Google Scholar]
  10. Prasad RV, Bhumika V, Anil Kumar P, Srinivas NR. Tumebacillus lipolyticus sp. nov., isolated from river water. Int J Syst Evol Microbiol 2015; 65: 4363– 4368 [CrossRef] [PubMed]
    [Google Scholar]
  11. Kim JH, Kim W. Tumebacillus soli sp. nov., isolated from non-rhizosphere soil. Int J Syst Evol Microbiol 2016; 66: 2192– 2197 [CrossRef] [PubMed]
    [Google Scholar]
  12. Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003; 55: 541– 555 [CrossRef] [PubMed]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  14. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673– 4680 [CrossRef] [PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  16. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969; 18: 1– 32 [CrossRef]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution 1981; 35: 1229– 1242 [CrossRef] [PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  19. Schaeffer AB, Fulton MD. A simplified method of staining endospores. Science 1933; 77: 194 [CrossRef] [PubMed]
    [Google Scholar]
  20. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31: 575– 580 [PubMed]
    [Google Scholar]
  21. Goszczynska T, Serfontein JJ. Milk–Tween agar, a semiselective medium for isolation and differentiation of Pseudomonas syringae pv. syringae, Pseudomonas syringae pv. phaseolicola and Xanthomonas axonopodis pv. phaseoli. J Microbiol Methods 1998; 32: 65– 72 [CrossRef]
    [Google Scholar]
  22. Lanyi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1988; 19: 1– 67 [Crossref]
    [Google Scholar]
  23. Manual MO. Sherlock Microbial Identification System, Version 4.5 Newark, DE: MIDI. Inc; 2002
    [Google Scholar]
  24. Collins MD, Jones D. A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 1981; 51: 129– 134 [CrossRef] [PubMed]
    [Google Scholar]
  25. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45: 316– 354 [PubMed]
    [Google Scholar]
  26. Xin H, Itoh T, Zhou P, Suzuki K, Kamekura M et al. Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 2000; 50: 1297– 1303 [CrossRef] [PubMed]
    [Google Scholar]
  27. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66: 199– 202 [CrossRef]
    [Google Scholar]
  28. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36: 407– 477 [PubMed]
    [Google Scholar]
  29. Bousfield GR, Sugino H, Ward DN. Demonstration of a COOH-terminal extension on equine lutropin by means of a common acid-labile bond in equine lutropin and equine chorionic gonadotropin. J Biol Chem 1985; 260: 9531– 9533 [PubMed]
    [Google Scholar]
  30. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68: 461– 466 [CrossRef] [PubMed]
    [Google Scholar]
  31. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66: 1100– 1103 [CrossRef] [PubMed]
    [Google Scholar]
  32. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81– 91 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002725
Loading
/content/journal/ijsem/10.1099/ijsem.0.002725
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error