1887

Abstract

We carried out a comparative taxonomic study of Salinivibrio proteolyticus and Salinivibrio costicola subsp. vallismortis, as well as of five halophilic strains (IB574, IB872, PR5, PR919 and PR932), isolated from salterns in Spain and Puerto Rico that were closely related to these bacteria. Multilocus sequence analysis of concatenated gyrB, recA, rpoA and rpoD housekeeping genes showed that they constituted a single cluster separate from the other species and subspecies of Salinivibrio . Experimental and in silico DNA–DNA hybridization studies indicated that they are members of the same species, with relatedness of 100–74 % and 97.8–70.0 %, respectively. The average nucleotide identity (ANI) determined for these strains was 99.7–95.6 % for ANIb and 99.7–95.7 % for OrthoANI. However, the ANI values for S. costicola subsp. vallismortis DSM 8285 with respect to S. costicola subsp. costicola DSM 11403 and S. costicola subsp. alcaliphilus DSM 16359 were 78.7 and 78.9 % (ANIb) and 79.4 and 79.4 % (OrthoANI), respectively. The phylogenomic tree based on 1072 concatenated orthologous single-copy core genes confirmed that S. proteolyticus , S. costicola subsp. vallismortis and the five new isolates constitute a coherent single phylogroup, separated from the other species and subspecies of Salinivibrio . All these data indicate that S. costicola subsp. vallismortis is a heterotypic synonym of S. proteolyticus and we propose an emended description of this species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002716
2018-03-26
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1599.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002716&mimeType=html&fmt=ahah

References

  1. Mellado E, Moore ER, Nieto JJ, Ventosa A. Analysis of 16S rRNA gene sequences of Vibrio costicola strains: description of Salinivibrio costicola gen. nov., comb. nov. Int J Syst Bacteriol 1996; 46: 817– 821 [CrossRef] [PubMed]
    [Google Scholar]
  2. Smith FB. An investigation of a taint in rib bones of bacon. The determination of halophilic vibrios (n. spp.). Proc R Soc Queensland 1938; 49: 29– 52
    [Google Scholar]
  3. Garcia MT, Ventosa A, Ruiz-Berraquero F, Kocur M. Taxonomic study and amended description of Vibrio costicola. Int J Syst Bacteriol 1987; 37: 251– 256 [CrossRef]
    [Google Scholar]
  4. Kushner DJ, Kamekura M. Physiology of halophilic eubacteria. In Rodríguez-Varela F. (editor) Halophilic Bacteria Boca Raton: CRC Press; 1988; pp. 109– 138
    [Google Scholar]
  5. Gorriti MF, Dias GM, Chimetto LA, Trindade-Silva AE, Silva BS et al. Genomic and phenotypic attributes of novel salinivibrios from stromatolites, sediment and water from a high altitude lake. BMC Genomics 2014; 15: 473 [CrossRef] [PubMed]
    [Google Scholar]
  6. Huang CY, Garcia JL, Patel BK, Cayol JL, Baresi L et al. Salinivibrio costicola subsp. vallismortis subsp. nov., a halotolerant facultative anaerobe from Death Valley, and emended description of Salinivibrio costicola. Int J Syst Evol Microbiol 2000; 50: 615– 622 [CrossRef] [PubMed]
    [Google Scholar]
  7. Romano I, Gambacorta A, Lama L, Nicolaus B, Giordano A. Salinivibrio costicola subsp. alcaliphilus subsp. nov., a haloalkaliphilic aerobe from Campania Region (Italy). Syst Appl Microbiol 2005; 28: 34– 42 [CrossRef] [PubMed]
    [Google Scholar]
  8. Amoozegar MA, Schumann P, Hajighasemi M, Fatemi AZ, Karbalaei-Heidari HR. Salinivibrio proteolyticus sp. nov., a moderately halophilic and proteolytic species from a hypersaline lake in Iran. Int J Syst Evol Microbiol 2008; 58: 1159– 1163 [CrossRef] [PubMed]
    [Google Scholar]
  9. Chamroensaksri N, Tanasupawat S, Akaracharanya A, Visessanguan W, Kudo T et al. Salinivibrio siamensis sp. nov., from fermented fish (pla-ra) in Thailand. Int J Syst Evol Microbiol 2009; 59: 880– 885 [CrossRef] [PubMed]
    [Google Scholar]
  10. Romano I, Orlando P, Gambacorta A, Nicolaus B, Dipasquale L et al. Salinivibrio sharmensis sp. nov., a novel haloalkaliphilic bacterium from a saline lake in Ras Mohammed Park (Egypt). Extremophiles 2011; 15: 213– 220 [CrossRef] [PubMed]
    [Google Scholar]
  11. Ventosa A, Nieto JJ, Oren A. Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 1998; 62: 504– 544 [PubMed]
    [Google Scholar]
  12. Oren A. Halophilic Microorganisms and their Environments London: Kluwer Academic Press; 2002; [Crossref]
    [Google Scholar]
  13. López-Hermoso C, de La Haba RR, Cristina Sánchez-Porro C, Papke RT, Ventosa A. Assessment of multilocus sequence analysis as a valuable tool for the classification of the genus Salinivibrio. Front Microbiol 2017; 8: 1107 [CrossRef] [PubMed]
    [Google Scholar]
  14. Sanchez-Porro C, Amoozegar MA, Rohban R, Hajighasemi M, Ventosa A. Thalassobacillus cyri sp. nov., a moderately halophilic Gram-positive bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2009; 59: 2565– 2570 [CrossRef] [PubMed]
    [Google Scholar]
  15. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178: 703 [CrossRef] [PubMed]
    [Google Scholar]
  16. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press; 1977
    [Google Scholar]
  17. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 1982; 128: 1959– 1968 [CrossRef]
    [Google Scholar]
  18. Quesada E, Ventosa A, Ruiz-Berraquero F, Ramos Cormenzana A. Deleya halophila, a new species of moderately halophilic bacteria. Int J Syst Bacteriol 1984; 34: 287– 292 [CrossRef]
    [Google Scholar]
  19. Koser SA. Utilization of the salts of organic acids by the colon-aerogenes group. J Bacteriol 1923; 8: 493– 523 [PubMed]
    [Google Scholar]
  20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
    [Google Scholar]
  21. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52: 696– 704 [CrossRef] [PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  23. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp. 21– 132 [Crossref]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  25. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5: 109– 118 [CrossRef] [PubMed]
    [Google Scholar]
  26. Luo C, Walk ST, Gordon DM, Feldgarden M, Tiedje JM et al. Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc Natl Acad Sci USA 2011; 108: 7200– 7205 [CrossRef] [PubMed]
    [Google Scholar]
  27. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3: 208– 218 [CrossRef]
    [Google Scholar]
  28. Johnson JL. Similarity analysis of DNAs. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 655– 681
    [Google Scholar]
  29. Arahal DR, García MT, Ludwig W, Schleifer KH, Ventosa A. Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb. nov. and Chromohalobacter israelensis comb. nov. Int J Syst Evol Microbiol 2001; 51: 1443– 1448 [CrossRef] [PubMed]
    [Google Scholar]
  30. Arahal DR, García MT, Vargas C, Cánovas D, Nieto JJ et al. Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int J Syst Evol Microbiol 2001; 51: 1457– 1462 [CrossRef] [PubMed]
    [Google Scholar]
  31. De Ley J, Tijtgat R. Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek 1970; 36: 461– 474 [CrossRef] [PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  33. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2: 117– 134 [CrossRef] [PubMed]
    [Google Scholar]
  34. López-Hermoso C, de La Haba RR, Sánchez-Porro C, Bayliss SC, Feil EJ et al. Draft Genome Sequences of Salinivibrio proteolyticus, Salinivibrio sharmensis, Salinivibrio siamensis, Salinivibrio costicola subsp. alcaliphilus, Salinivibrio costicola subsp. vallismortis, and 29 new isolates belonging to the genus Salinivibrio. Genome Announc 2017; 5: e00244-17 [CrossRef] [PubMed]
    [Google Scholar]
  35. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  36. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  38. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66: 1100– 1103 [CrossRef] [PubMed]
    [Google Scholar]
  39. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5: 113 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002716
Loading
/content/journal/ijsem/10.1099/ijsem.0.002716
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error