1887

Abstract

A yellow-pigmented, Gram-stain-negative, rod-shaped, non-spore-forming bacterium (strain KSS165-70) was isolated from a coolant lubricant emulsion. The 16S rRNA gene sequence analysis of strain KSS165-70 showed high sequence similarity to the type strains of (98.1 %), (97.9 %) and (97.8 %). Sequence similarities to type strains of all other species were below 97.5 %. Ubiquinone Q-10 was detected as the major respiratory quinone. The predominant fatty acid Cω7 and the typical 2-hydroxy fatty acid C 2-OH were detected. The polar lipid profile contained the major lipids diphosphatidylglycerol, phosphatedylethanolamine, sphingoglycolipid, phosphatidylcholine and two unidentified phospholipids. The polyamine pattern contained the major compound spermidine. Characterization by 16S rRNA gene sequence analysis, physiological parameters, pigment analysis, and ubiquinone, polar lipid and fatty acid composition revealed that strain KSS165-70 represents a new species of the genus For this reason, we propose the name sp. nov. with the type strain KSS165-70 (=CIP 111490=CCM 8814).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002702
2018-05-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1560.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002702&mimeType=html&fmt=ahah

References

  1. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001;51:1405–1417 [CrossRef][PubMed]
    [Google Scholar]
  2. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990;34:99–119 [CrossRef][PubMed]
    [Google Scholar]
  3. Glaeser SP, Kämpfer P. The family Sphingomonadaceae. In Rosenberg E. (editor) Alphaproteobacteria and Betaproteobacteria Heidelberg-New York: Springer Verlag; 2014; pp.642–707
    [Google Scholar]
  4. Balkwill DL, Drake GR, Reeves RH, Fredrickson JK, White DC et al. Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 1997;47:191–201 [CrossRef][PubMed]
    [Google Scholar]
  5. Sohn JH, Kwon KK, Kang JH, Jung HB, Kim SJ. Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 2004;54:1483–1487 [CrossRef][PubMed]
    [Google Scholar]
  6. Niharika N, Moskalikova H, Kaur J, Sedlackova M, Hampl A et al. Novosphingobium barchaimii sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2013;63:667–672 [CrossRef][PubMed]
    [Google Scholar]
  7. Glaeser SP, Kämpfer P, Busse HJ, Langer S, Glaeser J. Novosphingobium acidiphilum sp. nov., an acidophilic salt-sensitive bacterium isolated from the humic acid-rich Lake Grosse Fuchskuhle. Int J Syst Evol Microbiol 2009;59:323–330 [CrossRef][PubMed]
    [Google Scholar]
  8. Glaeser SP, Bolte K, Busse HJ, Kämpfer P, Grossart HP et al. Novosphingobium aquaticum sp. nov., isolated from the humic-matter-rich bog lake Grosse Fuchskuhle. Int J Syst Evol Microbiol 2013;63:2630–2636 [CrossRef][PubMed]
    [Google Scholar]
  9. Glaeser SP, Bolte K, Martin K, Busse HJ, Grossart HP et al. Novosphingobium fuchskuhlense sp. nov., isolated from the north-east basin of Lake Grosse Fuchskuhle. Int J Syst Evol Microbiol 2013;63:586–592 [CrossRef][PubMed]
    [Google Scholar]
  10. Neef A, Witzenberger R, Kämpfer P. Detection of sphingomonads and in situ identification in activated sludge using 16S rRNA-targeted oligonucleotide probes. J Ind Microbiol Biotechnol 1999;23:261–267 [CrossRef][PubMed]
    [Google Scholar]
  11. Fujii K, Satomi M, Morita N, Motomura T, Tanaka T et al. Novosphingobium tardaugens sp. nov., an oestradiol-degrading bacterium isolated from activated sludge of a sewage treatment plant in Tokyo. Int J Syst Evol Microbiol 2003;53:47–52 [CrossRef][PubMed]
    [Google Scholar]
  12. Tiirola MA, Busse HJ, Kämpfer P, Männistö MK. Novosphingobium lentum sp. nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process. Int J Syst Evol Microbiol 2005;55:583–588 [CrossRef][PubMed]
    [Google Scholar]
  13. Tiirola MA, Männistö MK, Puhakka JA, Kulomaa MS. Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system. Appl Environ Microbiol 2002;68:173–180 [CrossRef][PubMed]
    [Google Scholar]
  14. Lim YW, Moon EY, Chun J. Reclassification of Flavobacterium resinovorum Delaporte and Daste 1956 as Novosphingobium resinovorum comb. nov., with Novosphingobium subarcticum (Nohynek et al. 1996) Takeuchi et al. 2001 as a later heterotypic synonym. Int J Syst Evol Microbiol 2007;57:1906–1908 [CrossRef][PubMed]
    [Google Scholar]
  15. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al. Novosphingobium arabidopsis sp. nov., a DDT-resistant bacterium isolated from the rhizosphere of Arabidopsis thaliana. Int J Syst Evol Microbiol 2014;64:594–598 [CrossRef][PubMed]
    [Google Scholar]
  16. Liu ZP, Wang BJ, Liu YH, Liu SJ. Novosphingobium taihuense sp. nov., a novel aromatic-compound-degrading bacterium isolated from Taihu Lake, China. Int J Syst Evol Microbiol 2005;55:1229–1232 [CrossRef][PubMed]
    [Google Scholar]
  17. Lee LH, Azman AS, Zainal N, Eng SK, Fang CM et al. Novosphingobium malaysiense sp. nov. isolated from mangrove sediment. Int J Syst Evol Microbiol 2014;64:1194–1201 [CrossRef][PubMed]
    [Google Scholar]
  18. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  20. Brosius J, Dull TJ, Sleeter DD, Noller HF. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 1981;148:107–127 [CrossRef][PubMed]
    [Google Scholar]
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  22. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  23. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  24. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  25. Jukes TH, Cantor CR. Evolution of the protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132[Crossref]
    [Google Scholar]
  26. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.6 Department of Genome Sciences, University of Washington, Seattle: 2005
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  28. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989;8:151–156 [CrossRef]
    [Google Scholar]
  29. Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R. Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 1998;48:179–186 [CrossRef][PubMed]
    [Google Scholar]
  30. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991;21:227–251 [CrossRef][PubMed]
    [Google Scholar]
  31. Kämpfer P. Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae. Zentralbl Bakteriol 1990;273:164–172 [CrossRef][PubMed]
    [Google Scholar]
  32. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  33. Kämpfer P, Witzenberger R, Denner EB, Busse HJ, Neef A. Novosphingobium hassiacum sp. nov., a new species isolated from an aerated sewage pond. Syst Appl Microbiol 2002;25:37–45 [CrossRef][PubMed]
    [Google Scholar]
  34. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  35. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  36. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996;47:39–52 [CrossRef]
    [Google Scholar]
  37. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988;11:1–8 [CrossRef]
    [Google Scholar]
  38. Busse HJ, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
    [Google Scholar]
  39. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007;57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  40. Busse HJ, Kämpfer P, Denner EB. Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol 1999;23:242–251 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002702
Loading
/content/journal/ijsem/10.1099/ijsem.0.002702
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error