1887

Abstract

A bacterial strain designated LSN-49 was isolated from a brackish river in Taiwan and characterized using a polyphasic taxonomy approach. Cells of strain LSN-49 were Gram-staining-negative, aerobic, poly-β-hydroxybutyrate accumulating, motile by means of a monopolar flagellum, non-spore forming, straight rods and formed shiny and translucent colonies. Growth occurred at 20–40 °C (optimum, 25–30 °C), at pH 6–10 (optimum, pH 7–8) and with 0–3 % (w/v) NaCl [optimum, 0–1 % (w/v)]. The predominant fatty acids were summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), C17 : 1ω8c and C16 : 0. The polar lipid profile consisted of a mixture of phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine, (PC), two uncharacterized aminophospholipids (APL1 and APL2), one uncharacterized glycolipid (GL1), four uncharacterized phospholipids (PL1–PL4) and four uncharacterized lipids (L1–L4). The major polyamine was putrescine. The major isoprenoid quinone was Q-8 and the DNA G+C content was 51.0 mol%. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that LSN-49 formed a distinct lineage with respect to closely related genera in the family Pseudoalteromonadaceae . LSN-49 was most closely related to Pseudoalteromonas , Algicola and Psychrosphaera and showed 89.3–92.1 % sequence similarity with members of the family Pseudoalteromonadaceae with validly published names. On the basis of the genotypic and phenotypic data, LSN-49 represents a novel genus and species of the family Pseudoalteromonadaceae , for which the name Salsuginimonas clara gen. nov., sp. nov. is proposed. The type strain is LSN-49 (=BCRC 81005=LMG 29726=KCTC 52439).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002371
2017-10-06
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4747.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002371&mimeType=html&fmt=ahah

References

  1. Ivanova EP, Flavier S, Christen R. Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 2004; 54: 1773– 1788 [CrossRef] [PubMed]
    [Google Scholar]
  2. Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 1995; 45: 755– 761 [CrossRef] [PubMed]
    [Google Scholar]
  3. Ivanova EP, Sawabe T, Lysenko AM, Gorshkova NM, Hayashi K et al. Pseudoalteromonas translucida sp. nov. and Pseudoalteromonas paragorgicola sp. nov., and emended description of the genus. Int J Syst Evol Microbiol 2002; 52: 1759– 1766 [CrossRef] [PubMed]
    [Google Scholar]
  4. Park S, Yoshizawa S, Hamasaki K, Kogure K, Yokota A. Psychrosphaera saromensis gen. nov., sp. nov., within the family Pseudoalteromonadaceae, isolated from Lake Saroma, Japan. J Gen Appl Microbiol 2010; 56: 475– 480 [CrossRef] [PubMed]
    [Google Scholar]
  5. Hwang CY, Lee I, Hwang YJ, Yoon SJ, Lee WS et al. Pseudoalteromonas neustonica sp. nov., isolated from the sea surface microlayer of the Ross Sea (Antarctica), and emended description of the genus Pseudoalteromonas. Int J Syst Evol Microbiol 2016; 66: 3377– 3382 [CrossRef] [PubMed]
    [Google Scholar]
  6. Chen WM, Laevens S, Lee TM, Coenye T, de Vos P et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001; 51: 1729– 1735 [CrossRef] [PubMed]
    [Google Scholar]
  7. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  8. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997; 47: 249– 251 [CrossRef] [PubMed]
    [Google Scholar]
  9. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  10. Cole JR, Wang Q, Cardenas E, Fish J, Chai B et al. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009; 37: D141– D145 [CrossRef] [PubMed]
    [Google Scholar]
  11. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  12. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  13. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 2007; 23: 2947– 2948 [CrossRef] [PubMed]
    [Google Scholar]
  14. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983; [Crossref]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  17. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18: 1– 32 [CrossRef]
    [Google Scholar]
  18. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10: 1073– 1095 [PubMed]
    [Google Scholar]
  19. Felsenstein J. PHYLIP (Phylogeny inference package), version 3.5c Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA 1993
    [Google Scholar]
  20. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp. 19– 33
    [Google Scholar]
  21. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61: 3756– 3758 [PubMed]
    [Google Scholar]
  22. Schlegel HG, Lafferty R, Krauss I. The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Mikrobiol 1970; 71: 283– 294 [CrossRef] [PubMed]
    [Google Scholar]
  23. Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 1999; 171: 73– 80 [CrossRef] [PubMed]
    [Google Scholar]
  24. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp. 309– 329
    [Google Scholar]
  25. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparativesystematic. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp. 330– 393
    [Google Scholar]
  26. Wen CM, Tseng CS, Cheng CY, Li YK. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002; 35: 213– 219 [CrossRef] [PubMed]
    [Google Scholar]
  27. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50: 1861– 1868 [CrossRef] [PubMed]
    [Google Scholar]
  28. Chang SC, Wang JT, Vandamme P, Hwang JH, Chang PS et al. Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol 2004; 27: 43– 49 [CrossRef] [PubMed]
    [Google Scholar]
  29. Nokhal TH, Schlegel HG. Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 1983; 33: 26– 37 [CrossRef]
    [Google Scholar]
  30. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  31. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp. 121– 161
    [Google Scholar]
  32. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp. 265– 309
    [Google Scholar]
  33. Ying Y, Tian XX, Wang JJ, Qu LY, Li J. Pseudoalteromonas fenneropenaei sp. nov., a marine bacterium isolated from sediment of Fenneropenaeus chinensis farming pond. Int J Syst Evol Microbiol 2016; 66: 2754– 2759 [CrossRef] [PubMed]
    [Google Scholar]
  34. Zhao CH, Luo JJ, Gong T, Huang XL, Ye DZ et al. Pseudoalteromonas xiamenensis sp. nov., a marine bacterium isolated from coastal surface seawater. Int J Syst Evol Microbiol 2014; 64: 444– 448 [CrossRef] [PubMed]
    [Google Scholar]
  35. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  36. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11: 1– 8 [CrossRef]
    [Google Scholar]
  37. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47: 698– 708 [CrossRef]
    [Google Scholar]
  38. Lee JH, Baik KS, Kim D, Seong CN. Psychrosphaera aestuarii sp. nov. and Psychrosphaera haliotis sp. nov., isolated from the marine environment, and emended description of the genus Psychrosphaera. Int J Syst Evol Microbiol 2014; 64: 1952– 1957 [CrossRef] [PubMed]
    [Google Scholar]
  39. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 1998; 19: 554– 568 [CrossRef] [PubMed]
    [Google Scholar]
  40. Holmström C, James S, Neilan BA, White DC, Kjelleberg S. Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents. Int J Syst Bacteriol 1998; 48: 1205– 1212 [CrossRef] [PubMed]
    [Google Scholar]
  41. Nam YD, Chang HW, Park JR, Kwon HY, Quan ZX et al. Pseudoalteromonas marina sp. nov., a marine bacterium isolated from tidal flats of the Yellow Sea, and reclassification of Pseudoalteromonas sagamiensis as Algicola sagamiensis comb. nov. Int J Syst Evol Microbiol 2007; 57: 12– 18 [CrossRef] [PubMed]
    [Google Scholar]
  42. Park S, Jung YT, Park DS, Yoon JH. Pseudoalteromonas aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66: 2078– 2083 [CrossRef] [PubMed]
    [Google Scholar]
  43. Sawabe T, Makino H, Tatsumi M, Nakano K, Tajima K et al. Pseudoalteromonas bacteriolytica sp. nov., a marine bacterium that is the causative agent of red spot disease of Laminaria japonica. Int J Syst Bacteriol 1998; 48: 769– 774 [CrossRef] [PubMed]
    [Google Scholar]
  44. Kobayashi T, Imada C, Hiraishi A, Tsujibo H, Miyamoto K et al. Pseudoalteromonas sagamiensis sp. nov., a marine bacterium that produces protease inhibitors. Int J Syst Evol Microbiol 2003; 53: 1807– 1811 [CrossRef] [PubMed]
    [Google Scholar]
  45. Lau SC, Tsoi MM, Li X, Dobretsov S, Plakhotnikova Y et al. Pseudoalteromonas spongiae sp. nov., a novel member of the γ-Proteobacteria isolated from the sponge Mycale adhaerens in Hong Kong waters. Int J Syst Evol Microbiol 2005; 55: 1593– 1596 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002371
Loading
/content/journal/ijsem/10.1099/ijsem.0.002371
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error