1887

Abstract

The bacterial strain MWH-K35W1 was isolated from a permanently anoxic water layer of a meromictic lake located in the Austrian Salzkammergut area. The basically chemo-organoheterotrophic strain was isolated and maintained under aerobic conditions. Phylogenetic analyses of the 16S rRNA gene and the glutamine synthetase gene () of the strain suggested an affiliation to the genus and the cryptic species complex PnecC. Strain MWH-K35W1 shares with the type strains of the six free-living species of the genus affiliated with this species complex 16S rRNA gene sequence similarities of 99.6–99.9 %, while the type material of the obligate endosymbiont , which is also affiliated with this species complex, shares a gene sequence similarity of 99.1 %. Genome sequencing resulted in a genome size of 2.14 Mbp and a DNA G+C content of 45.98 mol%. Major fatty acids were Cω7, Cω7 and C. This strain is the first strain of the genus found to encode a proteorhodopsin-like protein but, in contrast to some other strains affiliated to this genus, it does not encode a putative anoxygenic photosynthesis system. Multilocus sequence analysis based on partial sequences of eight housekeeping genes, as well as average nucleotide identity (ANI) analyses, did not suggest that strain MWH-K35W1 belongs to a previously described species. We propose the name for a novel species with strain MWH-K35W1 (=DSM 24006=LMG 29706) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002347
2017-11-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4646.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002347&mimeType=html&fmt=ahah

References

  1. Heckmann K, Schmidt HJ. Polynucleobacter necessarius gen. nov., sp. nov., an obligately endosymbiotic bacterium living in the cytoplasm of Euplotes aediculatus. Int J Syst Bacteriol 1987;37:456–457 [CrossRef]
    [Google Scholar]
  2. Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han SK. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology 2002;28:141–155 [CrossRef]
    [Google Scholar]
  3. Burkert U, Warnecke F, Babenzien D, Zwirnmann E, Pernthaler J. Members of a readily enriched beta-proteobacterial clade are common in surface waters of a humic lake. Appl Environ Microbiol 2003;69:6550–6559 [CrossRef][PubMed]
    [Google Scholar]
  4. Percent SF, Frischer ME, Vescio PA, Duffy EB, Milano V et al. Bacterial community structure of acid-impacted lakes: what controls diversity?. Appl Environ Microbiol 2008;74:1856–1868 [CrossRef][PubMed]
    [Google Scholar]
  5. Jezberová J, Jezbera J, Brandt U, Lindström ES, Langenheder S et al. Ubiquity of Polynucleobacter necessarius ssp. asymbioticus in lentic freshwater habitats of a heterogeneous 2000 km2 area. Environ Microbiol 2010;12:658–669 [CrossRef][PubMed]
    [Google Scholar]
  6. Hahn MW, Pöckl M, Wu QL. Low intraspecific diversity in a Polynucleobacter subcluster population numerically dominating bacterioplankton of a freshwater pond. Appl Environ Microbiol 2005;71:4539–4547 [CrossRef][PubMed]
    [Google Scholar]
  7. Wu QL, Hahn MW. Differences in structure and dynamics of Polynucleobacter communities in a temperate and a subtropical lake, revealed at three phylogenetic levels. FEMS Microbiol Ecol 2006;57:67–79 [CrossRef][PubMed]
    [Google Scholar]
  8. Meincke L, Copeland A, Lapidus A, Lucas S, Berry KW et al. Complete genome sequence of Polynucleobacter necessarius subsp. asymbioticus type strain (QLW-P1DMWA-1T). Stand Genomic Sci 2012;6:74–83 [CrossRef][PubMed]
    [Google Scholar]
  9. Hahn MW, Scheuerl T, Jezberová J, Koll U, Jezbera J et al. The passive yet successful way of planktonic life: genomic and experimental analysis of the ecology of a free-living Polynucleobacter population. PLoS One 2012;7:e32772 [CrossRef][PubMed]
    [Google Scholar]
  10. Boscaro V, Felletti M, Vannini C, Ackerman MS, Chain PS et al. Polynucleobacter necessarius, a model for genome reduction in both free-living and symbiotic bacteria. Proc Natl Acad Sci USA 2013;110:18590–18595 [CrossRef][PubMed]
    [Google Scholar]
  11. Hahn MW. Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol 2003;69:5248–5254 [CrossRef][PubMed]
    [Google Scholar]
  12. Hahn MW, Lang E, Brandt U, Lünsdorf H, Wu QL et al. Polynucleobacter cosmopolitanus sp. nov., free-living planktonic bacteria inhabiting freshwater lakes and rivers. Int J Syst Evol Microbiol 2010;60:166–173 [CrossRef][PubMed]
    [Google Scholar]
  13. Hahn MW, Minasyan A, Lang E, Koll U, Spröer C. Polynucleobacter difficilis sp. nov., a planktonic freshwater bacterium affiliated with subcluster B1 of the genus Polynucleobacter. Int J Syst Evol Microbiol 2012;62:376–383 [CrossRef][PubMed]
    [Google Scholar]
  14. Hahn MW, Lang E, Brandt U, Spröer C. Polynucleobacter acidiphobus sp. nov., a representative of an abundant group of planktonic freshwater bacteria. Int J Syst Evol Microbiol 2011;61:788–794 [CrossRef][PubMed]
    [Google Scholar]
  15. Hahn MW, Lang E, Tarao M, Brandt U. Polynucleobacter rarus sp. nov., a free-living planktonic bacterium isolated from an acidic lake. Int J Syst Evol Microbiol 2011;61:781–787 [CrossRef][PubMed]
    [Google Scholar]
  16. Hahn MW, Schmidt J, Pitt A, Taipale SJ, Lang E. Reclassification of four Polynucleobacter necessarius strains as representatives of Polynucleobacter asymbioticus comb. nov., Polynucleobacter duraquae sp. nov., Polynucleobacter yangtzensis sp. nov. and Polynucleobacter sinensis sp. nov., and emended description of Polynucleobacter necessarius. Int J Syst Evol Microbiol 2016;66:2883–2892 [CrossRef][PubMed]
    [Google Scholar]
  17. Hahn MW, Huymann LR, Koll U, Schmidt J, Lang E et al. Polynucleobacter wuianus sp. nov., a free-living freshwater bacterium affiliated with the cryptic species complex PnecC. Int J Syst Evol Microbiol 2017;67:379–385 [CrossRef][PubMed]
    [Google Scholar]
  18. Hahn MW, Karbon G, Koll U, Schmidt J, Lang E. Polynucleobacter sphagniphilus sp. nov. a planktonic freshwater bacterium isolated from an acidic and humic freshwater habitat. Int J Syst Evol Microbiol 2017;67:3261–3267 [CrossRef][PubMed]
    [Google Scholar]
  19. Hahn MW, Jezberová J, Koll U, Saueressig-Beck T, Schmidt J. Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences. Isme J 2016;10:1642–1655 [CrossRef][PubMed]
    [Google Scholar]
  20. Ruttner F. Untersuchungen über die biochemische Schichtung in einigen Seen der Ostalpen. Geogr Jahresber Osterr 1933;16:73–87
    [Google Scholar]
  21. Hahn MW, Stadler P, Wu QL, Pöckl M. The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 2004;57:379–390 [CrossRef][PubMed]
    [Google Scholar]
  22. Hahn MW, Lang E, Brandt U, Wu QL, Scheuerl T. Emended description of the genus Polynucleobacter and the species Polynucleobacter necessarius and proposal of two subspecies, P. necessarius subsp. necessarius subsp. nov. and P. necessarius subsp. asymbioticus subsp. nov. Int J Syst Evol Microbiol 2009;59:2002–2009 [CrossRef][PubMed]
    [Google Scholar]
  23. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985;49:1–7[PubMed]
    [Google Scholar]
  24. Martinez-Garcia M, Swan BK, Poulton NJ, Gomez ML, Masland D et al. High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. Isme J 2012;6:113–123 [CrossRef][PubMed]
    [Google Scholar]
  25. Kraft B, Strous M, Tegetmeyer HE. Microbial nitrate respiration–genes, enzymes and environmental distribution. J Biotechnol 2011;155:104–117 [CrossRef][PubMed]
    [Google Scholar]
  26. Jezbera J, Jezberová J, Brandt U, Hahn MW. Ubiquity of Polynucleobacter necessarius subspecies asymbioticus results from ecological diversification. Environ Microbiol 2011;13:922–931 [CrossRef][PubMed]
    [Google Scholar]
  27. Hoetzinger M, Schmidt J, Jezberová J, Koll U, Hahn MW. Microdiversification of a pelagic Polynucleobacter species is mainly driven by acquisition of genomic islands from a partially interspecific gene pool. Appl Environ Microbiol 2017;83:e02266-16 [CrossRef][PubMed]
    [Google Scholar]
  28. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005;102:2567–2572 [CrossRef][PubMed]
    [Google Scholar]
  29. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  30. Vannini C, Pöckl M, Petroni G, Wu QL, Lang E et al. Endosymbiosis in statu nascendi: close phylogenetic relationship between obligately endosymbiotic and obligately free-living Polynucleobacter strains (Betaproteobacteria). Environ Microbiol 2007;9:347–359 [CrossRef][PubMed]
    [Google Scholar]
  31. Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 2012;40:D115–D122 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002347
Loading
/content/journal/ijsem/10.1099/ijsem.0.002347
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error