1887

Abstract

A Gram-stain-negative, facultatively aerobic bacterium, designated strain D1, was isolated from soil in South Korea. Cells of strain D1 were non-motile rods with oxidase- and catalase-positive activities. Growth was observed at 15–40 °C (optimum, 30–37 °C), at pH 5.5–9.0 (optimum, pH 7.0–8.0) and in the presence of 0.0–5.0 % (w/v) NaCl (optimum, 0.0–1.0 %). The only respiratory quinone detected was menaquinone 7 (MK-7), and iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (comprising C16 : 1ω7c/C16  : 1ω6c) were identified as the major fatty acids. Phosphatidylethanolamine was the major polar lipid, and two unidentified glycophospholipids and four unidentified lipids were also detected as minor polar lipids. Sphingolipids, a typical chemotaxonomic feature of the genus Sphingobacterium , were detected. The G+C content of the genomic DNA was 43.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain D1 formed a phyletic lineage with Sphingobacterium hotanense XH4 within the genus Sphingobacterium . Strain D1 was most closely related to S. hotanense XH4 (98.1 % 16S rRNA gene sequence similarity) and Sphingobacterium cellulitidis R-53603 (97.2 %), and the DNA–DNA relatedness level between strain D1 and the type strain of S. cellulitidis was 43.1±0.7 %. Based on the phenotypic, chemotaxonomic and molecular features, strain D1 clearly represents a novel species of the genus Sphingobacterium , for which the name Sphingobacterium humi sp. nov. is proposed. The type strain is D1 (=KACC 18595=JCM 31225).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002345
2017-09-25
2019-08-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4632.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002345&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 1983; 33: 580– 598 [CrossRef]
    [Google Scholar]
  2. Holmes B, Weaver RE, Steigerwalt AG, Brenner DJ. A taxonomic study of Flavobacterium spiritivorum and Sphingobacterium mizutae: proposal of Flavobacterium yabuuchiae sp. nov. and Flavobacterium mizutaii comb. nov. Int J Syst Bacteriol 1988; 38: 348– 353 [CrossRef]
    [Google Scholar]
  3. Takeuchi M, Yokota A. Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., sphingobacterium thalpophilum comb. nov. and two genospecies of the genus Sphingobacterium, and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum. J Gen Appl Microbiol 1992; 38: 465– 482 [CrossRef]
    [Google Scholar]
  4. Shivaji S, Ray MK, Shyamala Rao N, Saisree L, Jagannadham MV et al. Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int J Syst Bacteriol 1992; 42: 102– 106 [CrossRef]
    [Google Scholar]
  5. Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K et al. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 1998; 48: 165– 177 [CrossRef] [PubMed]
    [Google Scholar]
  6. Farfán M, Montes MJ, Marqués AM. Reclassification of Sphingobacterium antarcticum Shivaji et al. 1992 as Pedobacter antarcticus comb. nov. and Pedobacter piscium (Takeuchi and Yokota 1993) Steyn et al. 1998 as a later heterotypic synonym of Pedobacter antarcticus. Int J Syst Evol Microbiol 2014; 64: 863– 868 [CrossRef] [PubMed]
    [Google Scholar]
  7. Wauters G, Janssens M, de Baere T, Vaneechoutte M, Deschaght P. Isolates belonging to CDC group II-i belong predominantly to Sphingobacterium mizutaii Yabuuchi et al. 1983: emended descriptions of S. mizutaii and of the genus Sphingobacterium. Int J Syst Evol Microbiol 2012; 62: 2598– 2601 [CrossRef] [PubMed]
    [Google Scholar]
  8. Fu YS, Hussain F, Habib N, Khan IU, Chu X et al. Sphingobacteriumsoli sp. nov., isolated from soil. Int J Syst Evol Microbiol 2017; 67: 2284– 2288 [CrossRef] [PubMed]
    [Google Scholar]
  9. Xu L, Sun JQ, Wang LJ, Gao ZW, Sun LZ et al. Sphingobacterium alkalisoli sp. nov., isolated from a saline-alkaline soil. Int J Syst Evol Microbiol 2017; 67: 1943– 1948 [CrossRef] [PubMed]
    [Google Scholar]
  10. Huys G, Purohit P, Tan CH, Snauwaert C, De Vos P et al. Sphingobacterium cellulitidis sp. nov., isolated from clinical and environmental sources. Int J Syst Evol Microbiol 2017; 67: 1415– 1421 [CrossRef] [PubMed]
    [Google Scholar]
  11. Wang X, Zhang CF, Yu X, Hu G, Yang HX et al. Sphingobacterium chuzhouense sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2016; 66: 4968– 4974 [CrossRef] [PubMed]
    [Google Scholar]
  12. Li Y, Song LM, Guo MW, Wang LF, Liang WX. Sphingobacterium populi sp. nov., isolated from bark of Populus × euramericana. Int J Syst Evol Microbiol 2016; 66: 3456– 3462 [CrossRef] [PubMed]
    [Google Scholar]
  13. Siddiqi MZ, Muhammad Shafi S, Choi KD, Im WT, Aslam Z. Sphingobacterium jejuense sp. nov., with ginsenoside-converting activity, isolated from compost. Int J Syst Evol Microbiol 2016; 66: 4433– 4439 [CrossRef] [PubMed]
    [Google Scholar]
  14. Lai WA, Hameed A, Liu YC, Hsu YH, Lin SY et al. Sphingobacterium cibi sp. nov., isolated from the food-waste compost and emended descriptions of Sphingobacterium spiritivorum (Holmes et al. 1982) Yabuuchi et al. 1983 and Sphingobacterium thermophilum Yabe et al. 2013. Int J Syst Evol Microbiol 2016; 66: 5336– 5344 [CrossRef] [PubMed]
    [Google Scholar]
  15. Sun JQ, Liu M, Wang XY, Xu L, Wu XL. Sphingobacterium suaedae sp. nov., isolated from the rhizosphere soil of Suaeda corniculata. Int J Syst Evol Microbiol 2015; 65: 4508– 4513 [CrossRef] [PubMed]
    [Google Scholar]
  16. Jeong SH, Jin HM, Lee HJ, Jeon CO. Altererythrobacter gangjinensis sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2013; 63: 971– 976 [CrossRef] [PubMed]
    [Google Scholar]
  17. Kim JM, Le NT, Chung BS, Park JH, Bae JW et al. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol 2008; 74: 7313– 7320 [CrossRef] [PubMed]
    [Google Scholar]
  18. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  19. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007; 3: e56 [CrossRef] [PubMed]
    [Google Scholar]
  20. Felsenstein J. Phylip (Phylogeny Inference Package), Version 3.6a Seattle, WA: Department of Genetics, University of Washington; 2002
    [Google Scholar]
  21. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312– 1313 [CrossRef] [PubMed]
    [Google Scholar]
  22. Chang HW, Nam YD, Jung MY, Kim KH, Roh SW et al. Statistical superiority of genome-probing microarrays as genomic DNA-DNA hybridization in revealing the bacterial phylogenetic relationship compared to conventional methods. J Microbiol Methods 2008; 75: 523– 530 [CrossRef] [PubMed]
    [Google Scholar]
  23. Stackebrandt E, Goebel BM. Taxonomic note: a place for dna-dna reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
    [Google Scholar]
  24. Gomori G. Preparation of buffers for use in enzyme studies. In Colowick SP, Kaplan NO. (editors) Methods in Enzymology New York: Academic Press; 1955; pp. 138– 146
    [Google Scholar]
  25. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070 [CrossRef] [PubMed]
    [Google Scholar]
  26. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19: 1– 67
    [Google Scholar]
  27. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  28. Xiao T, He X, Cheng G, Kuang H, Ma X et al. Sphingobacterium hotanense sp. nov., isolated from soil of a Populus euphratica forest, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium shayense. Int J Syst Evol Microbiol 2013; 63: 815– 820 [CrossRef] [PubMed]
    [Google Scholar]
  29. Schmidt VS, Wenning M, Scherer S. Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. Int J Syst Evol Microbiol 2012; 62: 1506– 1511 [CrossRef] [PubMed]
    [Google Scholar]
  30. Choi HA, Lee SS. Sphingobacterium kyonggiense sp. nov., isolated from chloroethene-contaminated soil, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium mizutaii. Int J Syst Evol Microbiol 2012; 62: 2559– 2564 [CrossRef] [PubMed]
    [Google Scholar]
  31. Kim KH, Ten LN, Liu QM, Im WT, Lee ST. Sphingobacterium daejeonense sp. nov., isolated from a compost sample. Int J Syst Evol Microbiol 2006; 56: 2031– 2036 [CrossRef] [PubMed]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27: 104– 117 [CrossRef]
    [Google Scholar]
  34. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4: 770– 773 [PubMed] [Crossref]
    [Google Scholar]
  35. Ahmed I, Ehsan M, Sin Y, Paek J, Khalid N et al. Sphingobacterium pakistanensis sp. nov., a novel plant growth promoting rhizobacteria isolated from rhizosphere of Vigna mungo. Antonie van Leeuwenhoek 2014; 105: 325– 333 [CrossRef] [PubMed]
    [Google Scholar]
  36. Lee DH, Hur JS, Kahng HY. Sphingobacterium cladoniae sp. nov., isolated from lichen, Cladonia sp., and emended description of Sphingobacterium siyangense. Int J Syst Evol Microbiol 2013; 63: 755– 760 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002345
Loading
/content/journal/ijsem/10.1099/ijsem.0.002345
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error