1887

Abstract

A strictly aerobic, Gram-stain-negative, pale-golden, rod-shaped bacterium, designated as R18H21, was isolated from marine sediment collected from the Ross Sea, Antarctica. Strain R18H21 grew at 4–40 °C (optimum 25 °C), at pH 6.3–9.2 (optimum 7.5–8.5) and in 0.5–6 % (w/v) NaCl (optimum 2 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain R18H21 belonged to the genus Arenibacter , with the highest similarity to two type strains, Arenibacter latericius KMM 426 (96.6 %) and Arenibacter certesii KMM 3941 (96.6 %), and lower similarities (95.2–95.9 %) to five other members of the genus Arenibacter . The major fatty acids were iso-C17 : 0 3-OH, Summed Feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), iso-C15 : 0, iso-C15 : 1 G. The major polar lipids were phosphatidylethanolamine, an unidentified aminolipid and an unidentified phospholipid. The respiratory quinone of strain R18H21 was menaquinone-6. The DNA G+C content was 40.0 mol%. Based on phylogenetic, physiological and chemotaxonomic features, strain R18H21 has been classified as a novel species in the genus Arenibacter , for which the name Arenibacter antarcticus sp. nov. is proposed. The type strain of the novel species is R18H21 (=GDMCC 1.1159=KCTC 52924).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002340
2017-09-25
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4601.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002340&mimeType=html&fmt=ahah

References

  1. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070 [CrossRef] [PubMed]
    [Google Scholar]
  2. Ivanova EP, Nedashkovskaya OI, Chun J, Lysenko AM, Frolova GM et al. Arenibacter gen. nov., new genus of the family Flavobacteriaceae and description of a new species, Arenibacter latericius sp. nov. Int J Syst Evol Microbiol 2001; 51: 1987– 1995 [CrossRef] [PubMed]
    [Google Scholar]
  3. Nedashkovskaya OI, Suzuki M, Vysotskii MV, Mikhailov VV. Arenibacter troitsensis sp. nov., isolated from marine bottom sediment. Int J Syst Evol Microbiol 2003; 53: 1287– 1290 [CrossRef] [PubMed]
    [Google Scholar]
  4. Nedashkovskaya OI, Kim SB, Han SK, Lysenko AM, Mikhailov VV et al. Arenibacter certesii sp. nov., a novel marine bacterium isolated from the green alga Ulva fenestrata. Int J Syst Evol Microbiol 2004; 54: 1173– 1176 [CrossRef] [PubMed]
    [Google Scholar]
  5. Nedashkovskaya OI, Vancanneyt M, Cleenwerck I, Snauwaert C, Kim SB et al. Arenibacter palladensis sp. nov., a novel marine bacterium isolated from the green alga Ulva fenestrata, and emended description of the genus Arenibacter. Int J Syst Evol Microbiol 2006; 56: 155– 160 [CrossRef] [PubMed]
    [Google Scholar]
  6. Nedashkovskaya OI, Kim SB, Lysenko AM, Lee KH, Bae KS et al. Arenibacter echinorum sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2007; 57: 2655– 2659 [CrossRef] [PubMed]
    [Google Scholar]
  7. Sun F, Wang B, Du Y, Liu X, Lai Q et al. Arenibacter nanhaiticus sp. nov., isolated from marine sediment of the South China Sea. Int J Syst Evol Microbiol 2010; 60: 78– 83 [CrossRef] [PubMed]
    [Google Scholar]
  8. Jeong SH, Jin HM, Kim JM, Jeon CO. Arenibacter hampyeongensis sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2013; 63: 679– 684 [CrossRef] [PubMed]
    [Google Scholar]
  9. Ito K, Nakajima N, Yamamura S, Tomita M, Suzuki H et al. Draft genome sequence of Arenibacter sp. strain C-21, an iodine-accumulating bacterium isolated from surface marine sediment. Genome Announc 2016; 4: e01155-16 [CrossRef] [PubMed]
    [Google Scholar]
  10. Gutierrez T, Whitman WB, Huntemann M, Copeland A, Chen A et al. Genome sequence of Arenibacter algicola strain TG409, a hydrocarbon-degrading bacterium associated with marine eukaryotic phytoplankton. Genome Announc 2016; 4: e00765-16 [CrossRef] [PubMed]
    [Google Scholar]
  11. Gutierrez T, Rhodes G, Mishamandani S, Berry D, Whitman WB et al. Polycyclic aromatic hydrocarbon degradation of phytoplankton-associated Arenibacter spp. and description of Arenibacter algicola sp. nov., an aromatic hydrocarbon-degrading bacterium. Appl Environ Microbiol 2014; 80: 618– 628 [CrossRef] [PubMed]
    [Google Scholar]
  12. Chen Y, Tang J, Tang X, Wang C, Lian Y et al. New phenethylamine derivatives from Arenibacter nanhaiticus sp. nov. NH36AT and their antimicrobial activity. J Antibiot 2013; 66: 655– 661 [CrossRef] [PubMed]
    [Google Scholar]
  13. Tomshich SV, Isakov VV, Komandrova NA, Shevchenko LS. Structure of the O-specific polysaccharide of the marine bacterium Arenibacter palladensis KMM 3961T containing 2-acetamido-2-deoxy-l-galacturonic acid. Biochemistry 2012; 77: 87– 91 [CrossRef] [PubMed]
    [Google Scholar]
  14. Silipo A, Molinaro A, Nazarenko EL, Sturiale L, Garozzo D et al. Structural characterization of the carbohydrate backbone of the lipooligosaccharide of the marine bacterium Arenibacter certesii strain KMM 3941T. Carbohydr Res 2005; 340: 2540– 2549 [CrossRef] [PubMed]
    [Google Scholar]
  15. Wilson K. Preparation of genomic DNA from bacteria. In Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG et al. (editors) Current Protocols in Molecular Biology New York: Green Publishing and Wiley-Interscience; 1987
    [Google Scholar]
  16. Chen WP, Kuo TT. A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res 1993; 21: 2260 [CrossRef] [PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  21. Christakis GB, Perlorentzou SP, Chalkiopoulou I, Athanasiou A, Legakis NJ. Chryseobacterium indologenes non-catheter-related bacteremia in a patient with a solid tumor. J Clin Microbiol 2005; 43: 2021– 2023 [CrossRef] [PubMed]
    [Google Scholar]
  22. Gest H, Favinger JL. Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a "new" form of bacteriochlorophyll. Arch Microbiol 1983; 136: 11– 16 [CrossRef]
    [Google Scholar]
  23. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50: 1861– 1868 [CrossRef] [PubMed]
    [Google Scholar]
  24. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society of Microbiology; 2007; pp. 330– 393
    [Google Scholar]
  25. Lanyi B. Classical and rapid identification methods for medically important bacteria. Method Microbiol 1988; 19: 1– 67 [Crossref]
    [Google Scholar]
  26. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  27. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  28. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42: 457– 469 [CrossRef]
    [Google Scholar]
  29. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  30. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013; 63: 4386– 4395 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002340
Loading
/content/journal/ijsem/10.1099/ijsem.0.002340
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error