1887

Abstract

A novel alphaproteobacterium, strain RAM11, belonging to the family Rhizobiaceae was isolated from the pool water of a thermal bath in Budapest, Hungary. Based on the 16S rRNA gene sequence strain RAM11 shows the highest sequence similarity values to Ensifer adhaerens Casida A (97.44 %), to Ensifer (syn. Sinorhizobium ) americanus CFNEI 156 (96.87 %) and to Rhizobium azooxidifex Po 20/26 (96.76 %). The new bacterium is strictly aerobic, its optimum growth occurs at 20–37 °C, between pH 7 and 9 and without NaCl. It is motile due to a single polar flagellum, capable of budding and forms rosettes in liquid culture. The major isoprenoid quinone of strain RAM11 is Q-10, the major cellular fatty acids are C18 : 1 ω7c and 11-MeC18 : 1 ω7c. The polar lipid profile contains phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, an unidentified aminolipid and an unidentified phospholipid. The G+C content of DNA of the type strain is 62.9 mol%. Strain RAM11 (=DSM 29853=NCAIM B.02618) is proposed as type strain of a new genus and species with the proposed name Gellertiella hungarica gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002332
2017-09-25
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4565.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002332&mimeType=html&fmt=ahah

References

  1. Conn HJ. Taxonomic relationships of certain non-sporeforming rods in soil. Journal of Bacteriology 1938; 36: 320– 321
    [Google Scholar]
  2. Graham PH, Sadowsky MJ, Keyser HH, Barnet YM, Bradley RS et al. Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 1991; 41: 582– 587 [CrossRef]
    [Google Scholar]
  3. Young JM. Sinorhizobium versus Ensifer: may a taxonomy subcommittee of the ICSP contradict the Judicial Commission?. Int J Syst Evol Microbiol 2010; 60: 1711– 1713 [CrossRef] [PubMed]
    [Google Scholar]
  4. Willems A, Fernández-López M, Muñoz-Adelantado E, Goris J, de Vos P et al. Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Casida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. Request for an opinion. Int J Syst Evol Microbiol 2003; 53: 1207– 1217 [CrossRef] [PubMed]
    [Google Scholar]
  5. Wang YC, Wang F, Hou BC, Wang ET, Chen WF et al. Proposal of Ensifer psoraleae sp. nov., Ensifer sesbaniae sp. nov., Ensifer morelense comb. nov. and Ensifer americanum comb. nov. Syst Appl Microbiol 2013; 36: 467– 473 [CrossRef] [PubMed]
    [Google Scholar]
  6. Lindström K, Young JPW. International committee on systematics of prokaryotes subcommittee on the taxonomy of Agrobacterium and Rhizobium. Int J Syst Evol Microbiol 2011; 61: 3089– 3093 [Crossref]
    [Google Scholar]
  7. Martens M, Delaere M, Coopman R, De Vos P, Gillis M et al. Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 2007; 57: 489– 503 [CrossRef] [PubMed]
    [Google Scholar]
  8. Mousavi SA, Willems A, Nesme X, De Lajudie P, Lindström K. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 2015; 38: 84– 90 [CrossRef] [PubMed]
    [Google Scholar]
  9. Szuróczki S, Kéki Z, Káli S, Lippai A, Márialigeti K et al. Microbiological investigations on the water of a thermal bath at Budapest. Acta Microbiol Immunol Hung 2016; 63: 229– 241 [CrossRef] [PubMed]
    [Google Scholar]
  10. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49: 1– 7 [PubMed]
    [Google Scholar]
  11. Claus D. A standardized gram staining procedure. World J Microbiol Biotechnol 1992; 8: 451– 452 [CrossRef] [PubMed]
    [Google Scholar]
  12. Tóth E, Szuróczki S, Kéki Z, Kosztik J, Makk J et al. Brevundimonas balnearis sp. nov., isolated from the well water of a thermal bath. Int J Syst Evol Microbiol 2017; 67: 1033– 1038 [CrossRef] [PubMed]
    [Google Scholar]
  13. Ohad I, Danon D, Hestrin S. The use of shadow-casting technique for measurement of the width of elongated particles. J Cell Biol 1963; 17: 321– 326 [CrossRef] [PubMed]
    [Google Scholar]
  14. Casida LE. Ensifer adhaerens gen. nov., sp. nov.: a bacterial predator of bacteria in soil. Int J Syst Bacteriol 1982; 32: 339– 345 [CrossRef]
    [Google Scholar]
  15. Tóth EM, Vengring A, Homonnay ZG, Kéki Z, Spröer C et al. Phreatobacter oligotrophus gen. nov., sp. nov., an alphaproteobacterium isolated from ultrapure water of the water purification system of a power plant. Int J Syst Evol Microbiol 2014; 64: 839– 845 [CrossRef] [PubMed]
    [Google Scholar]
  16. Behrendt U, Kämpfer P, Glaeser SP, Augustin J, Ulrich A. Characterization of the N2O-producing soil bacterium Rhizobium azooxidifex sp. nov. Int J Syst Evol Microbiol 2016; 66: 2354– 2361 [CrossRef] [PubMed]
    [Google Scholar]
  17. Toledo I, Lloret L, Martínez-Romero E. Sinorhizobium americanus sp. nov., a new Sinorhizobium species nodulating native Acacia spp. in Mexico. Syst Appl Microbiol 2003; 26: 54– 64 [CrossRef] [PubMed]
    [Google Scholar]
  18. Urakami T, Oyanagi H, Araki H, Suzuki K-I, Komagata K. Recharacterization and emended description of the genus Mycoplana and description of two new species, Mycoplana ramosa and Mycoplana segnis. Int J Syst Bacteriol 1990; 40: 434– 442 [CrossRef]
    [Google Scholar]
  19. Frank B. Ueber die parasiten in den wurzelanschwillungen der papilionaceen. Bot Ztg 1879; 37: 387– 376, 394–399
    [Google Scholar]
  20. Young JM. Correction to the authority of Rhizobium leguminosarum. Int J Syst Bacteriol 1943; 1999: 49
    [Google Scholar]
  21. Casida LE. Bacterial predators of Micrococcus luteus in soil. Appl and Env Microbiol 1980; 1035– 1041
    [Google Scholar]
  22. Tóth EM, Kéki Z, Bohus V, Borsodi AK, Márialigeti K et al. Aquipuribacter hungaricus gen. nov., sp. nov., an actinobacterium isolated from the ultrapure water system of a Hungarian power plant. Int J Syst Evol Microbiol 2012; 62: 556– 562 [CrossRef] [PubMed]
    [Google Scholar]
  23. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389– 3402 [CrossRef] [PubMed]
    [Google Scholar]
  24. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41: D590– D596 [CrossRef] [PubMed]
    [Google Scholar]
  25. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef]
    [Google Scholar]
  27. Scholla MH, Elkan GH. Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. Int J Syst Bacteriol 1984; 34: 484– 486 [CrossRef]
    [Google Scholar]
  28. Nick G, De Lajudie P, Eardly BD, Suomalainen S, Paulin L et al. Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol 1999; 49: 1359– 1368 [CrossRef] [PubMed]
    [Google Scholar]
  29. Young JM. The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination "Sinorhizobium adhaerens" (Casida 1982) Willems et al. 2003 legitimate? Request for an opinion. Int J Syst Evol Microbiol 2003; 53: 2107– 2110 [CrossRef] [PubMed]
    [Google Scholar]
  30. Wei GH, Wang ET, Tan ZY, Zhu ME, Chen WX. Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov., respectively isolated from Indigofera spp. and Kummerowia stipulacea. Int J Syst Evol Microbiol 2002; 52: 2231– 2239 [CrossRef] [PubMed]
    [Google Scholar]
  31. Hou BC, Wang ET, Li Y, Jia RZ, Chen WF et al. Rhizobium tibeticum sp. nov., a symbiotic bacterium isolated from Trigonella archiducis-nicolai (Sirj.) vassilcz. Int J Syst Evol Microbiol 2009; 59: 3051– 3057 [CrossRef] [PubMed]
    [Google Scholar]
  32. Sheu SY, Chen ZH, Young CC, Chen WM. Rhizobium ipomoeae sp. nov., isolated from a water convolvulus field. Int J Syst Evol Microbiol 2016; 66: 1633– 1640 [CrossRef] [PubMed]
    [Google Scholar]
  33. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  34. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64: 346– 351 [CrossRef] [PubMed]
    [Google Scholar]
  35. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60: 249– 266 [CrossRef] [PubMed]
    [Google Scholar]
  36. Kalwasińska A, Felföldi T, Walczak M, Kosobucki P. Physiology and molecular phylogeny of bacteria isolated from alkaline distillery lime. Pol J Microbiol 2015; 64: 369– 377 [CrossRef] [PubMed]
    [Google Scholar]
  37. Vinuesa P, Silva C, Werner D, Martínez-Romero E. Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 2005; 34: 29– 54 [CrossRef] [PubMed]
    [Google Scholar]
  38. Rivas R, Velazquez E, Willems A, Vizcaino N, Subba-Rao NS et al. A new species of devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume neptunia natans (L.f.) Druce. Appl Environ Microbiol 2002; 68: 5217– 5222 [CrossRef]
    [Google Scholar]
  39. Bürgmann H, Widmer F, Von Sigler W, Zeyer J. New molecular screening tools for analysis of free-living diazotrophs in soil. Appl Environ Microbiol 2004; 70: 240– 247 [CrossRef] [PubMed]
    [Google Scholar]
  40. Hardy RW, Holsten RD, Jackson EK, Burns RC. The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 1968; 43: 1185– 1207 [CrossRef] [PubMed]
    [Google Scholar]
  41. Tralau T, Yang EC, Tralau C, Cook AM, Küpper FC. Why two are not enough: degradation of p-toluenesulfonate by a bacterial community from a pristine site in Moorea, French Polynesia. FEMS Microbiol Lett 2011; 316: 123– 129 [CrossRef]
    [Google Scholar]
  42. Kathiravan R, Jegan S, Ganga V, Prabavathy VR, Tushar L et al. Ciceribacter lividus gen. nov., sp. nov., isolated from rhizosphere soil of chick pea (Cicer arietinum L.). Int J Syst Evol Microbiol 2013; 63: 4484– 4488 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002332
Loading
/content/journal/ijsem/10.1099/ijsem.0.002332
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error