1887

Abstract

During a survey of carotenogenic yeasts from cold and oligotrophic environments in Patagonia, several yeasts of the genus Dioszegia (Tremellales, Agaricomycotina) were detected, including three strains that could not be assigned to any known taxa. Analyses of internal transcribed spacer and D1/D2 regions of the large subunit rRNA gene showed these strains are conspecific with several other strains found in the Italian Alps and in Antarctica soil. Phylogenetic analyses showed that 19 of these strains represent a novel yeast species of the genus Dioszegia. The name Dioszegia patagonica sp. nov. is proposed to accommodate these strains and CRUB 1147 (UFMG 195=CBMAI 1564=DBVPG 10618=CBS 14901; MycoBank MB 819782) was designated as the type strain. This Dioszegia species accumulates biotechnologically valuable compounds such as carotenoid pigments and mycosporines.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002211
2017-09-25
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4332.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002211&mimeType=html&fmt=ahah

References

  1. Liu XZ, Wang QM, Theelen B, Groenewald M, Bai FY et al. Phylogeny of tremellomycetous yeasts and related dimorphic and filamentous basidiomycetes reconstructed from multiple gene sequence analyses. Stud Mycol 2015; 81: 1– 26 [CrossRef] [PubMed]
    [Google Scholar]
  2. Takashima M, Deak T, Nakase T. Emendation of Dioszegia with redescription of Dioszegia hungarica and two new combinations, Dioszegia aurantiaca and Dioszegia crocea. J Gen Appl Microbiol 2001; 47: 75– 84 [CrossRef] [PubMed]
    [Google Scholar]
  3. Bai FY, Takashima M, Jia JH, Nakase T. Dioszegia zsoltii sp. nov., a new ballistoconidium-forming yeast species with two varieties. J Gen Appl Microbiol 2002; 48: 17– 23 [CrossRef] [PubMed]
    [Google Scholar]
  4. Wang QM, Bai FY, Zhao JH, Jia JH. Dioszegia changbaiensis sp. nov., a basidiomycetous yeast species isolated from northeast China. J Gen Appl Microbiol 2003; 49: 295– 299 [CrossRef] [PubMed]
    [Google Scholar]
  5. Wang QM, Jia JH, Bai FY. Diversity of basidiomycetous phylloplane yeasts belonging to the genus Dioszegia (Tremellales) and description of Dioszegia athyri sp. nov., Dioszegia butyracea sp. nov. and Dioszegia xingshanensis sp. nov. Antonie van Leeuwenhoek 2008; 93: 391– 399 [CrossRef] [PubMed]
    [Google Scholar]
  6. Connell LB, Redman R, Rodriguez R, Barrett A, Iszard M et al. Dioszegia antarctica sp. nov. and Dioszegia cryoxerica sp. nov., psychrophilic basidiomycetous yeasts from polar desert soils in Antarctica. Int J Syst Evol Microbiol 2010; 60: 1466– 1472 [CrossRef] [PubMed]
    [Google Scholar]
  7. Takashima M, van BH, An KD, Ohkuma M. Dioszegia rishiriensis sp. nov., a novel yeast species from soil collected on Rishiri Island, Hokkaido, Japan. Int J Syst Evol Microbiol 2011; 61: 1736– 1739 [CrossRef] [PubMed]
    [Google Scholar]
  8. Yurkov AM, Wehde T, Federici J, Schäfer AM, Ebinghaus M et al. Yeast diversity and species recovery rates from beech forest soils. Mycol Prog 2016; 15: 845– 859 [CrossRef]
    [Google Scholar]
  9. Inácio J, Portugal L, Spencer-Martins I, Fonseca A. Phylloplane yeasts from Portugal: seven novel anamorphic species in the Tremellales lineage of the Hymenomycetes (Basidiomycota) producing orange-coloured colonies. FEMS Yeast Res 2005; 5: 1167– 1183 [CrossRef] [PubMed]
    [Google Scholar]
  10. Thomas-Hall S, Watson K, Scorzetti G. Cryptococcus statzelliae sp. nov. and three novel strains of Cryptococcus victoriae, yeasts isolated from Antarctic soils. Int J Syst Evol Microbiol 2002; 52: 2303– 2308 [CrossRef] [PubMed]
    [Google Scholar]
  11. Villarreal P, Carrasco M, Barahona S, Alcaíno J, Cifuentes V et al. Tolerance to ultraviolet radiation of psychrotolerant yeasts and analysis of their carotenoid, mycosporine, and ergosterol content. Curr Microbiol 2016; 72: 94– 101 [CrossRef] [PubMed]
    [Google Scholar]
  12. Madhour A, Anke H, Mucci A, Davoli P, Weber RW. Biosynthesis of the xanthophyll plectaniaxanthin as a stress response in the red yeast Dioszegia (Tremellales, Heterobasidiomycetes, Fungi). Phytochemistry 2005; 66: 2617– 2626 [CrossRef] [PubMed]
    [Google Scholar]
  13. Takashima M, Nakase T. Dioszegia Zsolt emend. In Kurtzman CP, Fell JW, Boekhout T. (editors) The Yeasts, a Taxonomic Study Amsterdam: Elsevier; 2001
    [Google Scholar]
  14. Libkind D, Brizzio S, Ruffini A, Gadanho M, van Broock M et al. Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Antonie van Leeuwenhoek 2003; 84: 313– 322 [CrossRef] [PubMed]
    [Google Scholar]
  15. Libkind D, Moliné M, Sampaio JP, van Broock M. Yeasts from high-altitude lakes: influence of UV radiation. FEMS Microbiol Ecol 2009; 69: 353– 362 [CrossRef] [PubMed]
    [Google Scholar]
  16. Libkind D, Gadanho M, van Broock M, Sampaio JP. Sporidiobolus longiusculus sp. nov. and Sporobolomyces patagonicus sp. nov., novel yeasts of the Sporidiobolales isolated from aquatic environments in Patagonia, Argentina. Int J Syst Evol Microbiol 2005; 55: 503– 509 [CrossRef] [PubMed]
    [Google Scholar]
  17. Libkind D, Gadanho M, van Broock M, Sampaio JP. Cystofilobasidium lacus-mascardii sp. nov., a basidiomycetous yeast species isolated from aquatic environments of the Patagonian Andes, and Cystofilobasidium macerans sp. nov., the sexual stage of Cryptococcus macerans. Int J Syst Evol Microbiol 2009; 59: 622– 630 [CrossRef] [PubMed]
    [Google Scholar]
  18. Libkind D, Sampaio JP, van Broock M. Cystobasidiomycetes yeasts from Patagonia (Argentina): description of Rhodotorula meli sp. nov. from glacial meltwater. Int J Syst Evol Microbiol 2010; 60: 2251– 2256 [CrossRef] [PubMed]
    [Google Scholar]
  19. Kurtzman CP, Fell JW, Boekhout T, Robert V. Methods for isolation, phenotypic characterization and maintenance of yeasts. In Kurtzman CP, Fell JW, Boekhout T. (editors) The Yeasts London: Elsevier; 2011; pp. 87– 110 [Crossref]
    [Google Scholar]
  20. Libkind D, Arts MT, van Broock M. Fatty acid composition of cold-adapted carotenogenic basidiomycetous yeasts. Rev Argent Microbiol 2008; 40: 193– 197 [PubMed]
    [Google Scholar]
  21. Buzzini P, Innocenti M, Turchetti B, Libkind D, van Broock M et al. Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Can J Microbiol 2007; 53: 1024– 1031 [CrossRef] [PubMed]
    [Google Scholar]
  22. Sampaio JP, Gadanho M, Santos S, Duarte FL, Pais C et al. Polyphasic taxonomy of the basidiomycetous yeast genus Rhodosporidium: Rhodosporidium kratochvilovae and related anamorphic species. Int J Syst Evol Microbiol 2001; 51: 687– 697 [CrossRef] [PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
    [Google Scholar]
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  27. Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999; 16: 37– 48 [CrossRef] [PubMed]
    [Google Scholar]
  28. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389– 3402 [CrossRef] [PubMed]
    [Google Scholar]
  29. Fell JW, Statzell-Tallman A. Cryptococcus Vuillemin. In Kurtzman CP, Fell JW. (editors) The Yeasts, A Taxonomic Study Amsterdam: Elsevier; 1998; pp. 742– 767 [Crossref]
    [Google Scholar]
  30. Gácser A, Hamari Z, Pfeiffer I, Litter J, Kevei F et al. Organization of mitochondrial DNA in the basidiomycetous Dioszegia hungarica (Cryptococcus hungaricus) species. FEMS Microbiol Lett 2002; 212: 1– 6 [CrossRef] [PubMed]
    [Google Scholar]
  31. Gácser A, Hamari Z, Pfeiffer I, Varga J, Kevei F et al. Genetic diversity in the red yeast cryptococcus hungaricus and its phylogenetic relationship to some related basidiomycetous yeasts. FEMS Yeast Res 2001; 1: 213– 220 [PubMed]
    [Google Scholar]
  32. Bai FY, Zhao JH, Takashima M, Jia JH, Boekhout T et al. Reclassification of the Sporobolomyces roseus and Sporidiobolus pararoseus complexes, with the description of Sporobolomyces phaffii sp. nov. Int J Syst Evol Microbiol 2002; 52: 2309– 2314 [CrossRef] [PubMed]
    [Google Scholar]
  33. Lachance MA, Daniel HM, Meyer W, Prasad GS, Gautam SP et al. The D1/D2 domain of the large-subunit rDNA of the yeast species Clavispora lusitaniae is unusually polymorphic. FEMS Yeast Res 2003; 4: 253– 258 [CrossRef] [PubMed]
    [Google Scholar]
  34. Zagarese HE, Diaz M, Queimaliños C, Pedrozo F, Beda C. Mountain lakes in northwestern Patagonia. Verh Internat Verein Limnol 1999; 27: 6
    [Google Scholar]
  35. Villafañe VE, Helbling EW, Zagarese HE. Solar ultraviolet radiation and its impact on aquatic systems of Patagonia, South America. Ambio 2001; 30: 112– 117 [CrossRef] [PubMed]
    [Google Scholar]
  36. Vaïtilingom M, Attard E, Gaiani N, Sancelme M, Deguillaume L et al. Long-term features of cloud microbiology at the puy de Dôme (France). Atmos Environ 2012; 56: 88– 100 [CrossRef]
    [Google Scholar]
  37. Libkind D, Sommaruga R, Zagarese H, van Broock M. Mycosporines in carotenogenic yeasts. Syst Appl Microbiol 2005; 28: 749– 754 [CrossRef] [PubMed]
    [Google Scholar]
  38. Libkind D, Moliné M, Sommaruga R, Sampaio JP, van Broock M. Phylogenetic distribution of fungal mycosporines within the Pucciniomycotina (Basidiomycota). Yeast 2011; 28: 619– 627 [CrossRef] [PubMed]
    [Google Scholar]
  39. Yurkov AM, Vustin MM, Tyaglov BV, Maksimova IA, Sineokiy SP. Pigmented basidiomycetous yeasts are a promising source of carotenoids and ubiquinone Q10. Microbiology 2008; 77: 1– 6 [CrossRef]
    [Google Scholar]
  40. Moliné M, Libkind D, de García V, Giraudo MR. Production of pigments and photo-protective compounds by cold-adapted yeasts. In Buzzini P, Margesin R. (editors) Cold-Adapted Yeasts: Biodiversity, Adaptation Strategies and Biotechnological Significance Berlin, Heidelberg: Springer Verlag; 2013; pp. 193– 224
    [Google Scholar]
  41. Vaz AB, Rosa LH, Vieira ML, de Garcia V, Brandão LR et al. The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 2011; 42: 937– 947 [CrossRef] [PubMed]
    [Google Scholar]
  42. Brizzio S, Turchetti B, de García V, Libkind D, Buzzini P et al. Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 2007; 53: 519– 525 [CrossRef] [PubMed]
    [Google Scholar]
  43. Brandão LR, Libkind D, Vaz AB, Espírito Santo LC, Moliné M et al. Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol Ecol 2011; 76: 1– 13 [CrossRef] [PubMed]
    [Google Scholar]
  44. Turchetti B, Goretti M, Branda E, Diolaiuti G, D'Agata C et al. Influence of abiotic variables on culturable yeast diversity in two distinct Alpine glaciers. FEMS Microbiol Ecol 2013; 86: 327– 340 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002211
Loading
/content/journal/ijsem/10.1099/ijsem.0.002211
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error