1887

Abstract

A yellow-pigmented, Gram-stain-negative, motile and rod-shaped bacterium, strain M1A16, was isolated from the internal tissue of a sponge of the genus , which was long-term cultured in the CEMarin aquaria system at Justus Liebig University of Giessen. The strain grew well at 20–32 °C (optimum 25 °C), in the presence of 0–6 % NaCl (optimum 3 %), and at pH 5.5–9.0 (optimum pH 7.0–8.0). Phylogenetic analysis based on its 16S rRNA gene sequence placed the strain within the monophyletic cluster of the genus with highest sequence similarity to CP32 (98.3 % 16S rRNA gene sequence similarity). Sequence similarities to all other type strains were 98.0 % or less. DNA–DNA hybridization of strain M1A16 with CP32 resulted in hybridization values of 44.1 % (reciprocal 68.1 %). Major cellular fatty acids of strain M1A16 were iso-C G (18.1 %), iso-C (13.7 %), Cω7 (12.9 %), iso-C 3-OH (10.6 %) and iso-C 3-OH (10.2 %). The overall polyamine content was very low with major components being cadaverine, spermidine and -homospermidine. The major quinone was menaquinone MK-6. The polar lipid profile contained predominantly phosphatidylethanolamine, two unidentified aminolipids and two unidentified lipids devoid of a detectable functional group. The genomic DNA G+C content was 32.7 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic analyses, strain M1A16 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is M1A16 (=DSM 103138=CCM 8681=LMG 29588=CIP 111091).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002192
2017-12-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/4902.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002192&mimeType=html&fmt=ahah

References

  1. Nedashkovskaya OI, Kim SB, Han SK, Snauwaert C, Vancanneyt M et al. Winogradskyella thalassocola gen. nov., sp. nov., Winogradskyella epiphytica sp. nov. and Winogradskyella eximia sp. nov., marine bacteria of the family Flavobacteriaceae. Int J Syst Evol Microbiol 2005;55:49–55 [CrossRef][PubMed]
    [Google Scholar]
  2. Ivanova EP, Christen R, Gorshkova NM, Zhukova NV, Kurilenko VV et al. Winogradskyella exilis sp. nov., isolated from the starfish Stellaster equestris, and emended description of the genus Winogradskyella. Int J Syst Evol Microbiol 2010;60:1577–1580 [CrossRef][PubMed]
    [Google Scholar]
  3. Yoon BJ, Byun HD, Kim JY, Lee DH, Kahng HY et al. Winogradskyella lutea sp. nov., isolated from seawater, and emended description of the genus Winogradskyella. Int J Syst Evol Microbiol 2011;61:1539–1543 [CrossRef][PubMed]
    [Google Scholar]
  4. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV. Winogradskyella ulvae sp. nov., an epiphyte of a Pacific seaweed, and emended descriptions of the genus Winogradskyella and Winogradskyella thalassocola, Winogradskyella echinorum, Winogradskyella exilis and Winogradskyella eximia. Int J Syst Evol Microbiol 2012;62:1450–1456 [CrossRef][PubMed]
    [Google Scholar]
  5. Begum Z, Srinivas TN, Manasa P, Sailaja B, Sunil B et al. Winogradskyella psychrotolerans sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from Arctic sediment. Int J Syst Evol Microbiol 2013;63:1646–1652 [CrossRef][PubMed]
    [Google Scholar]
  6. Pinhassi J, Nedashkovskaya OI, Hagström A, Vancanneyt M. Winogradskyella rapida sp. nov., isolated from protein-enriched seawater. Int J Syst Evol Microbiol 2009;59:2180–2184 [CrossRef][PubMed]
    [Google Scholar]
  7. Kim SB, Nedashkovskaya OI. Winogradskyella pacifica sp. nov., a marine bacterium of the family Flavobacteriaceae. Int J Syst Evol Microbiol 2010;60:1948–1951 [CrossRef][PubMed]
    [Google Scholar]
  8. Yoon JH, Lee SY. Winogradskyella multivorans sp. nov., a polysaccharide-degrading bacterium isolated from seawater of an oyster farm. Antonie van Leeuwenhoek 2012;102:231–238 [CrossRef][PubMed]
    [Google Scholar]
  9. Lee SY, Park S, Oh TK, Yoon JH. Winogradskyella aquimaris sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012;62:1814–1818 [CrossRef][PubMed]
    [Google Scholar]
  10. Lee DH, Cho SJ, Kim SM, Lee SB. Winogradskyella damuponensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013;63:321–326 [CrossRef][PubMed]
    [Google Scholar]
  11. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV, Kim SJ, Rhee SK et al. Winogradskyella litoriviva sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2015;65:3652–3657 [CrossRef][PubMed]
    [Google Scholar]
  12. Zhang DC, Liu YX, Huang HJ, Weber K, Margesin R. Winogradskyella sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2016;66:3157–3163 [CrossRef][PubMed]
    [Google Scholar]
  13. Romanenko LA, Tanaka N, Frolova GM, Mikhailov VV. Winogradskyella arenosi sp. nov., a member of the family Flavobacteriaceae isolated from marine sediments from the sea of Japan. Int J Syst Evol Microbiol 2009;59:1443–1446 [CrossRef][PubMed]
    [Google Scholar]
  14. Kim SJ, Choi YR, Park SJ, Kim JG, Shin KS et al. Winogradskyella pulchriflava sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2013;63:3062–3068 [CrossRef][PubMed]
    [Google Scholar]
  15. Kang CH, Lee SY, Yoon JH. Winogradskyella litorisediminis sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2013;63:1793–1799 [CrossRef][PubMed]
    [Google Scholar]
  16. Park S, Park JM, Won SM, Bae KS, Yoon JH. Winogradskyella wandonensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2014;64:1520–1525 [CrossRef][PubMed]
    [Google Scholar]
  17. Park S, Yoon JH. Winogradskyella undariae sp. nov., a member of the family Flavobacteriaceae isolated from a brown algae reservoir. Antonie van Leeuwenhoek 2013;104:619–626 [CrossRef][PubMed]
    [Google Scholar]
  18. Kim JY, Park SH, Seo GY, Kim YJ, Oh DC. Winogradskyella eckloniae sp. nov., a marine bacterium isolated from the brown alga Ecklonia cava. Int J Syst Evol Microbiol 2015;65:2791–2796 [CrossRef][PubMed]
    [Google Scholar]
  19. Kim JY, Oh DC. Winogradskyella jejuensis sp. nov., a marine bacterium isolated from a brown alga Carpopeltis affinis. J Microbiol 2012;50:888–892 [CrossRef][PubMed]
    [Google Scholar]
  20. Nedashkovskaya OI, Vancanneyt M, Kim SB, Zhukova NV. Winogradskyella echinorum sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2009;59:1465–1468 [CrossRef][PubMed]
    [Google Scholar]
  21. Park S, Park JM, Won SM, Yoon JH. Winogradskyella crassostreae sp. nov., isolated from an oyster (Crassostrea gigas). Int J Syst Evol Microbiol 2015;65:2890–2895 [CrossRef][PubMed]
    [Google Scholar]
  22. Lau SC, Tsoi MM, Li X, Plakhotnikova I, Dobretsov S et al. Winogradskyella poriferorum sp. nov., a novel member of the family Flavobacteriaceae isolated from a sponge in the Bahamas. Int J Syst Evol Microbiol 2005;55:1589–1592 [CrossRef][PubMed]
    [Google Scholar]
  23. Mincer TJ, Jensen PR, Kauffman CA, Fenical W. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 2002;68:5005–5011 [CrossRef][PubMed]
    [Google Scholar]
  24. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.125–175
    [Google Scholar]
  25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  26. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 1978;75:4801–4805 [CrossRef][PubMed]
    [Google Scholar]
  27. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  28. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  29. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  30. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  31. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  32. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.6. Distributed by the author Department of Genome Sciences, University of Washington, Seattle; 2005
    [Google Scholar]
  33. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York, NY: Academic Press; 1969; pp.21–132[Crossref]
    [Google Scholar]
  34. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  35. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989;8:151–156 [CrossRef]
    [Google Scholar]
  36. Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R. Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 1998;48:179–186 [CrossRef][PubMed]
    [Google Scholar]
  37. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773 [CrossRef][PubMed]
    [Google Scholar]
  38. Glaeser SP, Falsen E, Martin K, Kämpfer P. Alicyclobacillus consociatus sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol 2013;63:3623–3627 [CrossRef][PubMed]
    [Google Scholar]
  39. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  40. Reichenbach H. Flavobacteriaceae fam. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 41. Int J Syst Bacteriol 1992;42:327–329[Crossref]
    [Google Scholar]
  41. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  42. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV, Kim SJ, Rhee SK. Litorimonas cladophorae sp. nov., a new alphaproteobacterium isolated from the Pacific green alga Cladophora stimpsoni, and emended descriptions of the genus Litorimonas and Litorimonas taeaensis. Antonie van Leeuwenhoek 2013;103:1263–1269 [CrossRef][PubMed]
    [Google Scholar]
  43. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991;21:227–251 [CrossRef][PubMed]
    [Google Scholar]
  44. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  45. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988;11:1–8 [CrossRef]
    [Google Scholar]
  46. Busse HJ, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
    [Google Scholar]
  47. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007;57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  48. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  49. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  50. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse HJ. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996;47:39–52 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002192
Loading
/content/journal/ijsem/10.1099/ijsem.0.002192
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error