1887

Abstract

A Gram-stain-negative, strictly aerobic, moderately halophilic bacterium, designated A-1, was isolated from a tidal flat of the Taean coast in South Korea. Cells were motile rods with a single flagellum showing oxidase-negative and catalase-positive activities and contained poly--hydroxyalkanoic acid granules. Growth of strain A-1 was observed at 20–40 °C (optimum, 30 °C), pH 6.0–10.5 (optimum, pH 7.0) and in the presence of 1.0–6.0 % (w/v) NaCl (optimum, 2.0 %). Strain A-1 contained C, summed feature 3 (comprising Cω7 and/or Cω6) and summed feature 8 (comprising C 7 and/or C 6) as the major fatty acids. The major polar lipids of strain A-1 were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The isoprenoid quinones detected were ubiquinone-7 and ubiquinone-8. The G+C content of the genomic DNA was 51.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain A-1 formed a distinct phylogenetic lineage from other genera within the family . Strain A-1 shared low 16S rRNA gene sequence similarities with other taxa (≤94.9 %). On the basis of phenotypic, chemotaxonomic and molecular properties, it is clear that strain A-1 represents a novel genus and species of the family , for which the name gen. nov., sp. nov. is proposed. The type strain is A-1 (=KACC 18119=JCM 30136).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002190
2017-10-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/3784.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002190&mimeType=html&fmt=ahah

References

  1. Hylemon PB, Wells JS, Krieg NR, Jannasch HW. The genus Spirillum: a taxonomic study. Int J Syst Bacteriol 1973;23:340–380 [CrossRef]
    [Google Scholar]
  2. Garrity GM, Bell JA, Lilburn T. Family I. Oceanospirillaceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 part B (The Gammaproteobacteria) New York: Springer; 2005; pp.271
    [Google Scholar]
  3. Hedlund BP, Geiselbrecht AD, Bair TJ, Staley JT. Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl Environ Microbiol 1999;65:251–259[PubMed]
    [Google Scholar]
  4. Wang Y, Yu M, Liu Y, Yang X, Zhang XH. Bacterioplanoides pacificum gen. nov., sp. nov., isolated from seawater of South Pacific Gyre. Int J Syst Evol Microbiol 2016;66:5010–5015 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen MH, Sheu SY, Chen CA, Wang JT, Chen WM. Corallomonas stylophorae gen. nov., sp. nov., a halophilic bacterium isolated from the reef-building coral Stylophora pistillata. Int J Syst Evol Microbiol 2013;63:982–988 [CrossRef][PubMed]
    [Google Scholar]
  6. Wang G, Jia Q, Li T, Dai S, Wu H et al. Bacterioplanes sanyensis gen. nov., sp. nov., a PHB-accumulating bacterium isolated from a pool of Spirulina platensis cultivation. Arch Microbiol 2014;196:739–744 [CrossRef][PubMed]
    [Google Scholar]
  7. Li Y, Zhu H, Lai Q, Lei X, Zhang H et al. Litoribrevibacter albus gen. nov. sp. nov., isolated from coastal seawater, Fujian Province, China. Antonie van Leeuwenhoek 2014;106:911–918 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim JM, Jin HM, Jeon CO. Muricauda taeanensis sp. nov., isolated from a marine tidal flat. Int J Syst Evol Microbiol 2013;63:2672–2677 [CrossRef][PubMed]
    [Google Scholar]
  9. Lo N, Jin HM, Jeon CO. Photobacterium aestuarii sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2014;64:625–630 [CrossRef][PubMed]
    [Google Scholar]
  10. Lo N, Kim KH, Baek K, Jia B, Jeon CO. Aestuariicella hydrocarbonica gen. nov., sp. nov., an aliphatic hydrocarbon-degrading bacterium isolated from a sea tidal flat. Int J Syst Evol Microbiol 2015;65:1935–1940 [CrossRef][PubMed]
    [Google Scholar]
  11. Kim KH, Jin HM, Jeong HI, Jeon CO. Maribacter lutimaris sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2016;66:1773–1778 [CrossRef][PubMed]
    [Google Scholar]
  12. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  13. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007;3:e56 [CrossRef][PubMed]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  17. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007;73:5261–5267 [CrossRef][PubMed]
    [Google Scholar]
  18. Rossi-Tamisier M, Benamar S, Raoult D, Fournier PE. Cautionary tale of using 16S rRNA gene sequence similarity values in identification of human-associated bacterial species. Int J Syst Evol Microbiol 2015;65:1929–1934 [CrossRef][PubMed]
    [Google Scholar]
  19. Gomori G. Preparation of buffers for use in enzyme studies. In Colowick SP, Kaplan NO. (editors) Methods in Enzymology New York: Academic Press; 1955; pp.138–146
    [Google Scholar]
  20. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  21. Ostle AG, Holt JG. Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 1982;44:238–241[PubMed]
    [Google Scholar]
  22. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987;19:1–67
    [Google Scholar]
  23. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  24. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977;27:104–117 [CrossRef]
    [Google Scholar]
  25. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  26. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–208[Crossref]
    [Google Scholar]
  27. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773 [CrossRef][PubMed]
    [Google Scholar]
  28. Park S, Jung YT, Kim S, Yoon JH. Marinobacterium aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016;66:1718–1723 [CrossRef][PubMed]
    [Google Scholar]
  29. Chen MH, Sheu SY, Chiu TF, Chen WM. Neptuniibacter halophilus sp. nov., isolated from a salt pan, and emended description of the genus Neptuniibacter. Int J Syst Evol Microbiol 2012;62:1104–1109 [CrossRef][PubMed]
    [Google Scholar]
  30. Arahal DR, Lekunberri I, González JM, Pascual J, Pujalte MJ et al. Neptuniibacter caesariensis gen. nov., sp. nov., a novel marine genome-sequenced gammaproteobacterium. Int J Syst Evol Microbiol 2007;57:1000–1006 [CrossRef][PubMed]
    [Google Scholar]
  31. Satomi M, Kimura B, Hamada T, Harayama S, Fujii T. Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov. Int J Syst Evol Microbiol 2002;52:739–747 [CrossRef][PubMed]
    [Google Scholar]
  32. González JM, Mayer F, Moran MA, Hodson RE, Whitman WB. Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 1997;47:369–376 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002190
Loading
/content/journal/ijsem/10.1099/ijsem.0.002190
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error