1887

Abstract

A Gram-stain-positive, facultatively anaerobic, and catalase- and oxidase-negative bacterial strain designated MOZM2, having 98.4 % 16S rRNA gene sequence identity with Lactobacillus reuteri DSM 20016, was isolated from a swab of the oral cavity of a home-bred guinea pig. Comparative analyses based on the hsp60, pheS and tuf genes confirmed L. reuteri as its closest relative species, with calculated sequence similarities of 92.8, 88.8 and 96.9 %, respectively. DNA–DNA hybridisation revealed a 42 % degree of genetic similarity between the novel strain and L. reuteri DSM 20016. Strain MOZM2 degrades carbohydrates via the 6-phosphogluconate/phosphoketolase pathway, evidenced by its production of gas from glucose and the end products of hexose catabolism. Comparative analysis of the cellular fatty acid profiles determined significant differences between MOZM2 and L. reuteri DSM 20016 in their proportions of C8 : 0, C14 : 1, C17 : 0, C18 : 2ω6t and C20 : 0 fatty acids. Results of genotypic analyses also demonstrated differences between these two strains. They also differed in DNA G+C content, and some biochemical and physiological characteristics. We therefore believe that the examined bacterial isolate should be considered as a new taxon within the group of obligately heterofermentative lactobacilli. The species name Lactobacillus caviae sp. nov. is proposed, of which the type strain is MOZM2 (=CCM 8609=DSM 100239=LMG 28780).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002044
2017-08-18
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2903.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002044&mimeType=html&fmt=ahah

References

  1. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR et al. Evolution of mammals and their gut microbes. Science 2008;320:1647–1651 [CrossRef][PubMed]
    [Google Scholar]
  2. Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics – a review. J Food Sci Technol 2015;52:7577–7587 [CrossRef][PubMed]
    [Google Scholar]
  3. Dewhirst FE, Klein EA, Bennett ML, Croft JM, Harris SJ et al. The feline oral microbiome: a provisional 16S rRNA gene based taxonomy with full-length reference sequences. Vet Microbiol 2015;175:294–303 [CrossRef][PubMed]
    [Google Scholar]
  4. Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simón-Soro A et al. The oral metagenome in health and disease. ISME J 2012;6:46–56 [CrossRef][PubMed]
    [Google Scholar]
  5. Nguyen TL, Vieira-Silva S, Liston A, Raes J. How informative is the mouse for human gut microbiota research?. Dis Model Mech 2015;8:1–16 [CrossRef][PubMed]
    [Google Scholar]
  6. Chun J, Kim KY, Lee JH, Choi Y. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol 2010;10:101 [CrossRef][PubMed]
    [Google Scholar]
  7. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005;43:5721–5732 [CrossRef][PubMed]
    [Google Scholar]
  8. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC et al. The human oral microbiome. J Bacteriol 2010;192:5002–5017 [CrossRef][PubMed]
    [Google Scholar]
  9. Caufield PW, Schön CN, Saraithong P, Li Y, Argimón S. Oral lactobacilli and dental caries: a model for niche adaptation in humans. J Dent Res 2015;94:110–118 [CrossRef][PubMed]
    [Google Scholar]
  10. Parte AC. LPSN – list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  11. Badet C, Thebaud NB. Ecology of lactobacilli in the oral cavity: a review of literature. Open Microbiol J 2008;2:38–48 [CrossRef][PubMed]
    [Google Scholar]
  12. Byun R, Nadkarni MA, Chhour KL, Martin FE, Jacques NA et al. Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. J Clin Microbiol 2004;42:3128–3136 [CrossRef][PubMed]
    [Google Scholar]
  13. Duran-Pinedo AE, Frias-Lopez J. Beyond microbial community composition: functional activities of the oral microbiome in health and disease. Microbes Infect 2015;17:505–516 [CrossRef][PubMed]
    [Google Scholar]
  14. Kõll P, Mändar R, Marcotte H, Leibur E, Mikelsaar M et al. Characterization of oral lactobacilli as potential probiotics for oral health. Oral Microbiol Immunol 2008;23:139–147 [CrossRef][PubMed]
    [Google Scholar]
  15. Anandharaj M, Sivasankari B. Isolation of potential probiotic Lactobacillus oris HMI68 from mother's milk with cholesterol-reducing property. J Biosci Bioeng 2014;118:153–159 [CrossRef][PubMed]
    [Google Scholar]
  16. Piwat S, Sophatha B, Teanpaisan R. An assessment of adhesion, aggregation and surface charges of Lactobacillus strains derived from the human oral cavity. Lett Appl Microbiol 2015;61:98–105 [CrossRef][PubMed]
    [Google Scholar]
  17. Hammes WP, Hertel C. Genus I. Lactobacillus Beijerinck 1901, 212AL. In de Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed.vol. 3 New York: Springer; 2009; pp.465–510
    [Google Scholar]
  18. Killer J, Dubná S, Sedláček I, Švec P. Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int J Syst Evol Microbiol 2014;64:152–157 [CrossRef][PubMed]
    [Google Scholar]
  19. Killer J, Votavová A, Valterová I, Vlková E, Rada V et al. Lactobacillus bombi sp. nov., from the digestive tract of laboratory-reared bumblebee queens (Bombus terrestris). Int J Syst Evol Microbiol 2014;64:2611–2617 [CrossRef][PubMed]
    [Google Scholar]
  20. Mitsuoka T, Fujisawa T. Lactobacillus hamsteri, a new species from the intestine of hamsters. Proc Jpn Acad Ser B Phys Biol Sci 1987;63:269–272 [CrossRef]
    [Google Scholar]
  21. Fujisawa T, Itoh K, Benno Y, Mitsuoka T, Intestinalis L. Lactobacillus intestinalis (ex Hemme 1974) sp. nov., nom. rev., isolated from the intestines of mice and rats. Int J Syst Bacteriol 1990;40:302–304 [CrossRef][PubMed]
    [Google Scholar]
  22. Osawa R, Fujisawa T, Pukall R. Lactobacillus apodemi sp. nov., a tannase-producing species isolated from wild mouse faeces. Int J Syst Evol Microbiol 2006;56:1693–1696 [CrossRef][PubMed]
    [Google Scholar]
  23. Clavel T, Saalfrank A, Charrier C, Haller D. Isolation of bacteria from mouse caecal samples and description of Bacteroides sartorii sp. nov. Arch Microbiol 2010;192:427–435 [CrossRef][PubMed]
    [Google Scholar]
  24. Tannock GW, Wilson CM, Loach D, Cook GM, Eason J et al. Resource partitioning in relation to cohabitation of Lactobacillus species in the mouse forestomach. ISME J 2012;6:927–938 [CrossRef][PubMed]
    [Google Scholar]
  25. Killer J, Havlík J, Vlková E, Rada V, Pechar R et al. Lactobacillus rodentium sp. nov., from the digestive tract of wild rodents. Int J Syst Evol Microbiol 2014;64:1526–1533 [CrossRef][PubMed]
    [Google Scholar]
  26. Kang MS, Oh JS, Lee HC, Lim HS, Lee SW et al. Inhibitory effect of Lactobacillus reuteri on periodontopathic and cariogenic bacteria. J Microbiol 2011;49:193–199 [CrossRef][PubMed]
    [Google Scholar]
  27. Saulnier DM, Santos F, Roos S, Mistretta TA, Spinler JK et al. Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features. PLoS One 2011;6:e18783 [CrossRef][PubMed]
    [Google Scholar]
  28. Frese SA, Mackenzie DA, Peterson DA, Schmaltz R, Fangman T et al. Molecular characterization of host-specific biofilm formation in a vertebrate gut symbiont. PLoS Genet 2013;9:e1004057 [CrossRef][PubMed]
    [Google Scholar]
  29. Scardovi V. Genus Bifidobacterium. In Mair NS, Sharp ME, Holt JG. (editors) Bergey´S Manual of Systematic Bacteriologyvol. 2 Baltimore: Williams & Wilkins; 1986; pp.1418–1419
    [Google Scholar]
  30. Ehrmann MA, Müller MR, Vogel RF. Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov. Int J Syst Evol Microbiol 2003;53:7–13 [CrossRef][PubMed]
    [Google Scholar]
  31. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  32. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  33. Mattarelli P, Holzapfel W, Franz CM, Endo A, Felis GE et al. Recommended minimal standards for description of new taxa of the genera Bifidobacterium, Lactobacillus and related genera. Int J Syst Evol Microbiol 2014;64:1434–1451 [CrossRef][PubMed]
    [Google Scholar]
  34. Gevers D, Huys G, Swings J. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 2001;205:31–36 [CrossRef][PubMed]
    [Google Scholar]
  35. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  36. Goris J, Suzuki K, Vos PD, Nakase T, Kersters K. Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. Can J Microbiol 1998;44:1148–1153 [CrossRef]
    [Google Scholar]
  37. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J. Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 2002;52:1551–1558 [CrossRef][PubMed]
    [Google Scholar]
  38. Killer J, Havlik J, Bunesova V, Vlkova E, Benada O. Pseudoscardovia radai sp. nov., another representative of a new genus within the family Bifidobacteriaceae isolated from the digestive tract of a wild pig (Sus scrofa scrofa). Int J Syst Evol Microbiol 2014;64:2932–2938 [CrossRef][PubMed]
    [Google Scholar]
  39. Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev 2001;25:39–67 [CrossRef][PubMed]
    [Google Scholar]
  40. Dobson CM, Deneer H, Lee S, Hemmingsen S, Glaze S et al. Phylogenetic analysis of the genus Pediococcus, including Pediococcus claussenii sp. nov., a novel lactic acid bacterium isolated from beer. Int J Syst Evol Microbiol 2002;52:2003–2010 [CrossRef][PubMed]
    [Google Scholar]
  41. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005;151:2141–2150 [CrossRef][PubMed]
    [Google Scholar]
  42. Ventura M, Canchaya C, Meylan V, Klaenhammer TR, Zink R. Analysis, characterization, and loci of the tuf genes in Lactobacillus and Bifidobacterium species and their direct application for species identification. Appl Environ Microbiol 2003;69:6908–6922 [CrossRef][PubMed]
    [Google Scholar]
  43. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  44. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000;17:540–552 [CrossRef][PubMed]
    [Google Scholar]
  45. Killer J, Kopečný J, Mrázek J, Koppová I, Havlík J et al. Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 2011;61:1315–1321 [CrossRef][PubMed]
    [Google Scholar]
  46. Müller MR, Ehrmann MA, Vogel RF. Lactobacillus frumenti sp. nov., a new lactic acid bacterium isolated from rye-bran fermentations with a long fermentation period. Int J Syst Evol Microbiol 2000;50:2127–2133 [CrossRef][PubMed]
    [Google Scholar]
  47. Killer J, Kopecný J, Mrázek J, Rada V, Benada O et al. Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 2009;59:2020–2024 [CrossRef][PubMed]
    [Google Scholar]
  48. Killer J, Kopečný J, Mrázek J, Havlík J, Koppová I et al. Bombiscardovia coagulans gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of bumblebees. Syst Appl Microbiol 2010;33:359–366 [CrossRef][PubMed]
    [Google Scholar]
  49. Johnsson T, Nikkila P, Toivonen L, Rosenqvist H, Laakso S. Cellular Fatty acid profiles of Lactobacillus and Lactococcus strains in relation to the oleic acid content of the cultivation medium. Appl Environ Microbiol 1995;61:4497–4499[PubMed]
    [Google Scholar]
  50. Schumann P. Peptidoglycan structure. Methods Microbiol 2011;38:101–129[CrossRef]
    [Google Scholar]
  51. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.330–393
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002044
Loading
/content/journal/ijsem/10.1099/ijsem.0.002044
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error