1887

Abstract

A Gram-staining-negative, non-motile, aerobic bacterial strain, designated Y3L17, was isolated from the saline–alkaline soil of a farmland, Hangjin Banner, Inner Mongolia, northern China. Y3L17 could grow at 15–45 °C (optimum 35 °C), pH 6.0–10.0 (optimum pH 8.0) and with 0–4 % (w/v) NaCl (optimum 0 %). The results of phylogenetic analysis based on the 16S rRNA gene and gyrB gene sequences revealed that Y3L17 tightly clustered with strains of members of the genus Arenimonas , sharing the highest 16S rRNA gene similarities with Arenimonas aestuarii S2-21 (99.5 %) and Arenimonas donghaensis HO3-R19 (98.2 %), and lower similarities (<97 %) with all the other type strains of species of this genus. However, Y3L17 shared only 92.62 % gyrB gene similarities with A. aestuarii S2-21. The DNA–DNA hybridization values of Y3L17 with A. aestuarii S2-21 and A. donghaensis HO3-R19 were 20.1±2.5 and 18.2±3.2 %, respectively. Y3L17 contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, five unknown phospholipids and one unknown lipid as the major polar lipids. Ubiquinone-8 (Q-8) was the predominant respiratory quinone, while iso-C15 : 0, iso-C17 : 0ω9c and iso-C11 : 0 3-OH were the major cellular fatty acids. Its genomic DNA G+C content was 65.4 mol%. On the basis of its phenotypic, phylogenetic and genotypic characteristics, Y3L17 represents a novel species within the genus Arenimonas , for which the name Arenimonas soli sp. nov. is proposed, the type strain is Y3L17 (=CGMCC 1.15905 =KCTC 52420).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002026
2017-08-30
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2829.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002026&mimeType=html&fmt=ahah

References

  1. Kwon SW, Kim BY, Weon HY, Baek YK, Go SJ. Arenimonas donghaensis gen. nov., sp. nov., isolated from seashore sand. Int J Syst Evol Microbiol 2007;57:954–958 [CrossRef][PubMed]
    [Google Scholar]
  2. Aslam Z, Park JH, Kim SW, Jeon CO, Chung YR. Arenimonas oryziterrae sp. nov., isolated from a field of rice (Oryza sativa L.) managed under a no-tillage regime, and reclassification of Aspromonas composti as Arenimonas composti comb. nov. Int J Syst Evol Microbiol 2009;59:2967–2972 [CrossRef][PubMed]
    [Google Scholar]
  3. Zhang SY, Xiao W, Xia YS, Wang YX, Cui XL et al. Arenimonas taoyuanensis sp. nov., a novel bacterium isolated from rice-field soil in China. Antonie van Leeuwenhoek 2015;107:1181–1187 [CrossRef][PubMed]
    [Google Scholar]
  4. Jin L, Kim KK, Im WT, Yang HC, Lee ST. Aspromonas composti gen. nov., sp. nov., a novel member of the family Xanthomonadaceae. Int J Syst Evol Microbiol 2007;57:1876–1880 [CrossRef][PubMed]
    [Google Scholar]
  5. Huy H, Jin L, Lee YK, Lee KC, Lee JS et al. Arenimonas daechungensis sp. nov., isolated from the sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 2013;63:484–489 [CrossRef][PubMed]
    [Google Scholar]
  6. Kim AR, Lee S, Han K, Ahn TY. Arenimonas aquatica [corrected] sp. nov., a member of the gammaproteobacterium, isolated from a freshwater reservoir. J Microbiol 2012;50:354–358 [CrossRef][PubMed]
    [Google Scholar]
  7. Yuan X, Nogi Y, Tan X, Zhang RG, Lv J. Arenimonas maotaiensis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2014;64:3994–4000 [CrossRef][PubMed]
    [Google Scholar]
  8. Young CC, Kämpfer P, Ho MJ, Busse HJ, Huber BE et al. Arenimonas malthae sp. nov., a gammaproteobacterium isolated from an oil-contaminated site. Int J Syst Evol Microbiol 2007;57:2790–2793 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen F, Shi Z, Wang G. Arenimonas metalli sp. nov., isolated from an iron mine. Int J Syst Evol Microbiol 2012;62:1744–1749 [CrossRef][PubMed]
    [Google Scholar]
  10. Jin L, Kim KK, An KG, Oh HM, Lee ST. Arenimonas daejeonensis sp. nov., isolated from compost. Int J Syst Evol Microbiol 2012;62:1674–1678 [CrossRef][PubMed]
    [Google Scholar]
  11. Jeong HI, Jin HM, Jeon CO. Arenimonas aestuarii sp. nov., isolated from estuary sediment. Int J Syst Evol Microbiol 2016;66:1527–1532 [CrossRef][PubMed]
    [Google Scholar]
  12. Sun JQ, Liu M, Wang XY, Xu L, Wu XL. Sphingobacterium suaedae sp. nov., isolated from the rhizosphere soil of Suaeda corniculata. Int J Syst Evol Microbiol 2015;65:4508–4513 [CrossRef][PubMed]
    [Google Scholar]
  13. Sun JQ, Xu L, Liu M, Wang XY, Wu XL. Flavobacterium suaedae sp. nov., an endophyte isolated from the root of Suaeda corniculata. Int J Syst Evol Microbiol 2016;66:1943–1949 [CrossRef][PubMed]
    [Google Scholar]
  14. Sun JQ, Xu L, Wu XL. Lysinibacillus alkalisoli sp. nov., isolated from saline–alkaline soil. Int J Syst Evol Microbiol 2017;67:67–71 [CrossRef][PubMed]
    [Google Scholar]
  15. Xu L, Sun JQ, Wang LJ, Liu XZ, Ji YY et al. Aliidiomarina soli sp. nov., isolated from saline-alkaline soil. Int J Syst Evol Microbiol 2017;67:724–728 [CrossRef][PubMed]
    [Google Scholar]
  16. Xu L, Sun J-Q, Wang L-J, Gao Z-W, Sun L-Z et al. Sphingobacterium alkalisoli sp. nov., isolated from saline–alkaline soil. Int J Syst Evol Microbiol 2017
    [Google Scholar]
  17. Wang YN, Chi CQ, Cai M, Lou ZY, Tang YQ et al. Amycolicicoccus subflavus gen. nov., sp. nov., an actinomycete isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 2010;60:638–643 [CrossRef][PubMed]
    [Google Scholar]
  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  22. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992;9:945–967
    [Google Scholar]
  23. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993;10:1073–1095[PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  25. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  26. Mandel M, Marmur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968;12B:195[CrossRef]
    [Google Scholar]
  27. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  28. Huß VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  29. Makk J, Homonnay ZG, Kéki Z, Nemes-Barnás K, Márialigeti K et al. Arenimonas subflava sp. nov., isolated from a drinking water network, and emended description of the genus Arenimonas. Int J Syst Evol Microbiol 2015;65:1915–1921 [CrossRef][PubMed]
    [Google Scholar]
  30. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  31. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[CrossRef]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Kates M. Techniques of Lipidology, 2nd ed. Amsterdam: Elsevier; 1986
    [Google Scholar]
  34. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[CrossRef]
    [Google Scholar]
  35. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  36. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing, China: Scientific Press; 2001
    [Google Scholar]
  37. Kim BC, Jeong WJ, Kim DY, Oh HW, Kim H et al. Paenibacillus pueri sp. nov., isolated from Pu'er tea. Int J Syst Evol Microbiol 2009;59:1002–1006 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002026
Loading
/content/journal/ijsem/10.1099/ijsem.0.002026
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error