1887

Abstract

A novel Gram-stain-positive bacterium designated CMU-NKS-70 was isolated from a subterranean termite nest and characterized using a polyphasic approach. The strain exhibited branching, pinkish-cream aerial mycelium and cream–brown substrate mycelium, and formed chains of rod-like spores. The 16S rRNA gene sequence analyses indicated that strain CMU-NKS-70 belonged to the genus Pseudonocardia , showing high similarity with Pseudonocardia oroxyli D10 (98.9 % 16S rRNA gene sequence similarity), Pseudonocardia xishanensis YIM 63638 (98.9 %) and Pseudonocardia kujensis A4038 (98.5 %). However, DNA–DNA relatedness values between strains CMU-NKS-70 and the closest phylogenetically related species ranged from 40.5±2.9 to 48.6±0.7 %. Whole-cell hydrolysates of strain CMU-NKS-70 consisted of meso-diaminopimelic acid, glucose, galactose, arabinose, mannose, ribose and rhamnose. The predominant menaquinone was MK-8(H4). The major cellular fatty acids (>10 %) were iso-C16 : 0, C16 : 0, C16 : 1ω7c and/or iso-C15 : 0 2-OH and 10-methyl C16 : 0. The polar lipids detected were phosphatidylethanolamine, phosphatidylmethylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, three unidentified glycolipids and two unidentified phospholipids. The G+C content of genomic DNA was 71.9 mol%. The physiological and biochemical properties also supported the phenotypic distinction of strain CMU-NKS-70 from its closely related species. On the basis of evidence from this study using a polyphasic approach, strain CMU-NKS-70 represents a novel species of the genus Pseudonocardia for which the name Pseudonocardia thailandensis sp. nov. is proposed. The type strain is CMU-NKS-70 (=JCM 31292=TBRC 2000).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002017
2017-08-30
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2773.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002017&mimeType=html&fmt=ahah

References

  1. Henssen A. Beiträge zur morphologie und systematik der thermophilen actinomyceten. Archiv für Mikrobiologie 1957;26:373–414 [CrossRef]
    [Google Scholar]
  2. Huang Y, Goodfellow M. Genus I. Pseudonocardia. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI. et al. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 5 The Actinobacteria New York: Springer; 2012; pp.1305–1323
    [Google Scholar]
  3. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970;20:435–443 [CrossRef]
    [Google Scholar]
  4. Huang Y, Wang L, Lu Z, Hong L, Liu Z et al. Proposal to combine the genera Actinobispora and Pseudonocardia in an emended genus Pseudonocardia, and description of Pseudonocardia zijingensis sp. nov. Int J Syst Evol Microbiol 2002;52:977–982 [CrossRef][PubMed]
    [Google Scholar]
  5. Labeda DP, Goodfellow M, Chun J, Zhi XY, Li WJ. Reassessment of the systematics of the suborder Pseudonocardineae: transfer of the genera within the family Actinosynnemataceae Labeda and Kroppenstedt 2000 emend. Zhi et al. 2009 into an emended family Pseudonocardiaceae Embley et al. 1989 emend. Zhi et al. 2009. Int J Syst Evol Microbiol 2011;61:1259–1264 [CrossRef][PubMed]
    [Google Scholar]
  6. Park SW, Park ST, Lee JE, Kim YM. Pseudonocardia carboxydivorans sp. nov., a carbon monoxide-oxidizing actinomycete, and an emended description of the genus Pseudonocardia. Int J Syst Evol Microbiol 2008;58:2475–2478 [CrossRef][PubMed]
    [Google Scholar]
  7. Qin S, Su YY, Zhang YQ, Wang HB, Jiang CL et al. Pseudonocardia ailaonensis sp. nov., isolated from soil in China. Int J Syst Evol Microbiol 2008;58:2086–2089 [CrossRef][PubMed]
    [Google Scholar]
  8. Sahin N, Veyisoglu A, Tatar D, Spröer C, Cetin D et al. Pseudonocardia cypriaca sp. nov., Pseudonocardia salamisensis sp. nov., Pseudonocardia hierapolitana sp. nov. and Pseudonocardia kujensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014;64:1703–1711 [CrossRef][PubMed]
    [Google Scholar]
  9. Gu Q, Luo H, Zheng W, Liu Z, Huang Y. Pseudonocardia oroxyli sp. nov., a novel actinomycete isolated from surface-sterilized Oroxylum indicum root. Int J Syst Evol Microbiol 2006;56:2193–2197 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen HH, Qin S, Li J, Zhang YQ, Xu LH et al. Pseudonocardia endophytica sp. nov., isolated from the pharmaceutical plant Lobelia clavata. Int J Syst Evol Microbiol 2009;59:559–563 [CrossRef][PubMed]
    [Google Scholar]
  11. Qin S, Zhu WY, Jiang JH, Klenk HP, Li J et al. Pseudonocardia tropica sp. nov., an endophytic actinomycete isolated from the stem of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 2010;60:2524–2528 [CrossRef][PubMed]
    [Google Scholar]
  12. Kaewkla O, Franco CM. Pseudonocardia adelaidensis sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of a grey box tree (Eucalyptus microcarpa). Int J Syst Evol Microbiol 2010;60:2818–2822 [CrossRef][PubMed]
    [Google Scholar]
  13. Kaewkla O, Franco CM. Pseudonocardia eucalypti sp. nov., an endophytic actinobacterium with a unique knobby spore surface, isolated from roots of a native Australian eucalyptus tree. Int J Syst Evol Microbiol 2011;61:742–746 [CrossRef][PubMed]
    [Google Scholar]
  14. Zhao GZ, Li J, Huang HY, Zhu WY, Park DJ et al. Pseudonocardia kunmingensis sp. nov., an actinobacterium isolated from surface-sterilized roots of Artemisia annua L. Int J Syst Evol Microbiol 2011;61:2292–2297 [CrossRef][PubMed]
    [Google Scholar]
  15. Zhao GZ, Li J, Zhu WY, Wei DQ, Zhang JL et al. Pseudonocardia xishanensis sp. nov., an endophytic actinomycete isolated from the roots of Artemisia annua L. Int J Syst Evol Microbiol 2012;62:2395–2399 [CrossRef][PubMed]
    [Google Scholar]
  16. Liu ZP, Wu JF, Liu ZH, Liu SJ. Pseudonocardia ammonioxydans sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2006;56:555–558 [CrossRef][PubMed]
    [Google Scholar]
  17. Zhang DF, Jiang Z, Li L, Liu BB, Zhang XM et al. Pseudonocardia sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2014;64:745–750 [CrossRef][PubMed]
    [Google Scholar]
  18. Kämpfer P, Kohlweyer U, Thiemer B, Andreesen JR. Pseudonocardia tetrahydrofuranoxydans sp. nov. Int J Syst Evol Microbiol 2006;56:1535–1538 [CrossRef][PubMed]
    [Google Scholar]
  19. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 1987;65:501–509 [CrossRef]
    [Google Scholar]
  20. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  21. Nakajima Y, Kitpreechavanich V, Suzuki K, Kudo T. Microbispora corallina sp. nov., a new species of the genus Microbispora isolated from Thai soil. Int J Syst Bacteriol 1999;49:1761–1767 [CrossRef][PubMed]
    [Google Scholar]
  22. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  23. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772–780 [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  25. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969;18:1–32 [CrossRef]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  30. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  31. Mikami H, Ishida Y. Post-column fluorometric detection of reducing sugars in high performance liquid chromatography using arginine. Bunseki Kagaku 1983;32:E207E210 [CrossRef]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  34. Tamaoka J. Analysis of bacterial menaquinone mixtures by reverse-phase high-performance liquid chromatography. Methods Enzymol 1986;123:31–36[PubMed]
    [Google Scholar]
  35. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  36. Murray RGE, Doetsch RN, Robinow CF. Determination and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.32–34
    [Google Scholar]
  37. Taylor HD, Knoche L, Grauville WC. Color Harmony Manual, 4th ed. Chicago: Container Corporation of America; 1958
    [Google Scholar]
  38. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  39. Pridham TG, Gottlieb D. The utilization of carbon compounds by some actinomycetales as an aid for species determination. J Bacteriol 1948;56:107–114[PubMed]
    [Google Scholar]
  40. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  41. Raeder U, Broda P. Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1985;1:17–20 [CrossRef]
    [Google Scholar]
  42. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  43. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  44. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–155
    [Google Scholar]
  45. Nie GX, Ming H, Wei DQ, Zhou EM, Tang X et al. Pseudonocardia yuanmoensis sp. nov., a novel actinobacterium isolated from soil in Yunnan, south-west China. Antonie van Leeuwenhoek 2012;101:753–760 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002017
Loading
/content/journal/ijsem/10.1099/ijsem.0.002017
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error