1887

Abstract

A novel Gram-stain-negative, aerobic, non-motile and short-rod-shaped bacterium, designated RP18, was isolated from forest soil in Gwang-ju, Republic of Korea. Growth occurred at 15–30 °C (optimum 30 °C), pH 6.0–7.0 (optimum pH 7.0), and was inhibited in the presence of normal saline. According to the 16S rRNA gene sequence, strain RP18 showed the highest sequence similarity to THG-DT81 (96.0 %), followed by EDIV (95.4 %) and DS-4 (95.2 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain RP18 was clustered with 9PNM-6 and MS-31 under the genus . The G+C content of the genomic DNA of strain RP18 was 61.5 mol%. The major cellular fatty acids (>6 % of the total) were C, C 2-OH, Cω6, summed feature 3 (Cω7 and/or Cω6) and summed feature 8 (Cω7 and/or Cω6). Ubiquinone-10 (Q-10) and -homospermidine were detected as the predominant respiratory quinone and major compound in the polyamine pattern, respectively. The major polar lipids of the isolate consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phospholipid and sphingoglycolipid. Based on phylogenetic analysis and physiological and biochemical characterization, strain RP18 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RP18 (=KACC 18914=JCM 31801).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002001
2017-08-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/8/2704.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002001&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990;34:99–119 [CrossRef][PubMed]
    [Google Scholar]
  2. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novo sphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001;51:1405–1417 [CrossRef][PubMed]
    [Google Scholar]
  3. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 2002;52:1485–1496 [CrossRef][PubMed]
    [Google Scholar]
  4. Busse HJ, Denner EB, Buczolits S, Salkinoja-Salonen M, Bennasar A et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 2003;53:1253–1260 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen H, Jogler M, Rohde M, Klenk HP, Busse HJ et al. Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 2012;62:2835–2843 [CrossRef][PubMed]
    [Google Scholar]
  6. Balkwill DL, Fredrickson JK, Romine MF. Sphingomonas and related genera. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E et al. (editors) The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd ed.vol. 7 New York: Springer; 2006; pp.605–629
    [Google Scholar]
  7. Kämpfer P, Denner EB, Meyer S, Moore ER, Busse HJ. Classification of "Pseudomonas azotocolligans" Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol 1997;47:577–583 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim SJ, Moon JY, Lim JM, Ahn JH, Weon HY et al. Sphingomonas aerophila sp. nov. and Sphingomonas naasensis sp. nov., isolated from air and soil, respectively. Int J Syst Evol Microbiol 2014;64:926–932 [CrossRef][PubMed]
    [Google Scholar]
  9. Liu D, Jin X, Sun X, Song Y, Feng L et al. Sphingomonas faucium sp. nov., isolated from canyon soil. Int J Syst Evol Microbiol 2016;66:2847–2852 [CrossRef][PubMed]
    [Google Scholar]
  10. Wei S, Wang T, Liu H, Zhang C, Guo J et al. Sphingomonas hengshuiensis sp. nov., isolated from lake wetland. Int J Syst Evol Microbiol 2015;65:4644–4649 [CrossRef][PubMed]
    [Google Scholar]
  11. Lee JS, Shin YK, Yoon JH, Takeuchi M, Pyun YR et al. Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 2001;51:1491–1498 [CrossRef][PubMed]
    [Google Scholar]
  12. Sheu SY, Chen YL, Chen WM. Sphingomonas fonticola sp. nov., isolated from spring water. Int J Syst Evol Microbiol 2015;65:4495–4502 [CrossRef][PubMed]
    [Google Scholar]
  13. Xie CH, Yokota A. Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. Int J Syst Evol Microbiol 2006;56:889–893 [CrossRef][PubMed]
    [Google Scholar]
  14. Zhu L, Si M, Li C, Xin K, Chen C et al. Sphingomonas gei sp. nov., isolated from roots of Geum aleppicum. Int J Syst Evol Microbiol 2015;65:1160–1166 [CrossRef][PubMed]
    [Google Scholar]
  15. Bayram N, Devrim I, Apa H, Gülfidan G, Türkyılmaz HN et al. Sphingomonas paucimobilis infections in children: 24 case reports. Mediterr J Hematol Infect Dis 2013;5:e2013040 [CrossRef][PubMed]
    [Google Scholar]
  16. Chaudhary DK, Kim J. Sphingomonas naphthae sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2016;66:4621–4627 [CrossRef][PubMed]
    [Google Scholar]
  17. Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H et al. Sphingomonas yabuuchiae sp. nov. and Brevundimonas nasdae sp. nov., isolated from the russian space laboratory mir. Int J Syst Evol Microbiol 2004;54:819–825 [CrossRef][PubMed]
    [Google Scholar]
  18. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley & Sons; 1991; pp.115–175
    [Google Scholar]
  19. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 1999;41:95–98
    [Google Scholar]
  20. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  21. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  22. Son HM, Kook M, Tran HT, Kim KY, Park SY et al. Sphingomonas kyeonggiense sp. nov., isolated from soil of a ginseng field. Antonie Van Leeuwenhoek 2014;105:791–797 [CrossRef][PubMed]
    [Google Scholar]
  23. Denner EB, Paukner S, Kämpfer P, Moore ER, Abraham WR et al. Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int J Syst Evol Microbiol 2001;51:827–841 [CrossRef][PubMed]
    [Google Scholar]
  24. Yoon JH, Lee MH, Kang SJ, Lee SY, Oh TK et al. Sphingomonas dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2006;56:2165–2169 [CrossRef][PubMed]
    [Google Scholar]
  25. Romanenko LA, Uchino M, Frolova GM, Tanaka N, Kalinovskaya NI et al. Sphingomonas molluscorum sp. nov., a novel marine isolate with antimicrobial activity. Int J Syst Evol Microbiol 2007;57:358–363 [CrossRef][PubMed]
    [Google Scholar]
  26. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  31. Feng GD, Yang SZ, Wang YH, Zhao GZ, Deng MR et al. Sphingomonas gimensis sp. nov., a novel Gram-negative bacterium isolated from abandoned lead-zinc ore mine. Antonie van Leeuwenhoek 2014;105:1091–1097 [CrossRef][PubMed]
    [Google Scholar]
  32. Park S, Yokota A, Itoh T, Park JS. Sphingomonas jejuensis sp. nov., isolated from marine sponge Hymeniacidon flavia. J Microbiol 2011;49:238–242 [CrossRef][PubMed]
    [Google Scholar]
  33. Barrow GI, Cowan FRK. Steel's Manual for the Identification of Medical Bacteria, 3rd ed. London: Cambridge University Press; 1993;[CrossRef]
    [Google Scholar]
  34. Reichenbach H, Order I, Leadbetter C. In: Staley JT, Bryant MP, Pfennig N, Holt JG (editors). Bergey's Manual of Systematic Bacteriology, vol. 3. Baltimore: Williams & Wilkins 1974;1989:2011–2013
    [Google Scholar]
  35. Koski P, Hirvela-Koski V, Bernardet JF. Flexibacter columnaris infection in arctic char (Salvelinus alpinus L.); first isolation in Finland. Bull Eur Assoc Fish Pathol 1993;13:66–69
    [Google Scholar]
  36. Bernardet JF, Kerouault B. Phenotypic and genomic studies of "Cytophaga psychrophila" isolated from diseased rainbow trout (Oncorhynchus mykiss) in France. Appl Environ Microbiol 1989;55:1796–1800[PubMed]
    [Google Scholar]
  37. Mccammon SA, Innes BH, Bowman JP, Franzmann PD, Dobson SJ et al. Flavobacterium hibernum sp. nov., a lactose-utilizing bacterium from a freshwater antarctic lake. Int J Syst Bacteriol 1998;48:1405–1412 [CrossRef][PubMed]
    [Google Scholar]
  38. Prescott L, Harley JP. The effects of chemical agents on bacteria II: antimicrobial agents (Kirby-Bauer Method). In Prescott LM, Harley JP. (editors) Laboratory Exercises in Microbiology, 5th ed. New York: McGraw-Hill; 2001; pp.257–262
    [Google Scholar]
  39. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Tech Bull Regist Med Technol 1966;36:49–52[PubMed]
    [Google Scholar]
  40. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  41. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–206[CrossRef]
    [Google Scholar]
  42. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988;11:1–8 [CrossRef]
    [Google Scholar]
  43. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
    [Google Scholar]
  44. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002001
Loading
/content/journal/ijsem/10.1099/ijsem.0.002001
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error