1887

Abstract

A Gram-stain-negative, strictly aerobic, non-flagellated, non-gliding, catalase-positive, long-rod-shaped bacterium designated strain CSW06, was isolated from surface seawater of the Bohai Sea. Optimal growth occurred in the presence of 4 % (w/v) NaCl, at pH 7 and at 28 °C. The predominant fatty acids (>10 % of total fatty acids) were iso-C15 : 1G, iso-C17 : 0 3-OH and summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c). The major polar lipids were phosphatidylethanolamine, two unidentified phospholipids and one unidentified aminolipid. The DNA G+C content of CSW06 was 50.3 mol%. The predominant isoprenoid quinone detected was menaquinone with six isoprene units (MK-6). On the basis of the results of polyphasic analyses, CSW06 was considered to represent a novel species of the genus Muricauda in the family Flavobacteriaceae , for which the name Muricauda lutea sp. nov. is proposed. The type strain is CSW06 (=CGMCC 1.15761=JCM 31455=KCTC 52375=MCCC 1K03195).

Keyword(s): Bohai Sea , Muricauda lutea and seawater
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001792
2017-05-05
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/1064.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001792&mimeType=html&fmt=ahah

References

  1. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001;51:1997–2006 [CrossRef][PubMed]
    [Google Scholar]
  2. Yoon JH, Lee MH, Oh TK, Park YH. Muricauda flavescens sp. nov. and Muricauda aquimarina sp. nov., isolated from a salt lake near Hwajinpo Beach of the East Sea in Korea, and emended description of the genus Muricauda. Int J Syst Evol Microbiol 2005;55:1015–1019 [CrossRef][PubMed]
    [Google Scholar]
  3. Hwang CY, Kim MH, Bae GD, Zhang GI, Kim YH et al. Muricauda olearia sp. nov., isolated from crude-oil-contaminated seawater, and emended description of the genus Muricauda. Int J Syst Evol Microbiol 2009;59:1856–1861 [CrossRef][PubMed]
    [Google Scholar]
  4. Yoon JH, Kang SJ, Jung YT, Oh TK. Muricauda lutimaris sp. nov., isolated from a tidal flat of the Yellow Sea. Int J Syst Evol Microbiol 2008;58:1603–1607 [CrossRef][PubMed]
    [Google Scholar]
  5. Arun AB, Chen WM, Lai WA, Chao JH, Rekha PD et al. Muricauda lutaonensis sp. nov., a moderate thermophile isolated from a coastal hot spring. Int J Syst Evol Microbiol 2009;59:2738–2742 [CrossRef][PubMed]
    [Google Scholar]
  6. Lee SY, Park S, Oh TK, Yoon JH. Muricauda beolgyonensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2012;62:1134–1139 [CrossRef][PubMed]
    [Google Scholar]
  7. Kim JM, Jin HM, Jeon CO. Muricauda taeanensis sp. nov., isolated from a marine tidal flat. Int J Syst Evol Microbiol 2013;63:2672–2677 [CrossRef][PubMed]
    [Google Scholar]
  8. Wu YH, Yu PS, Zhou YD, Xu L, Wang CS et al. Muricauda antarctica sp. nov., a marine member of the Flavobacteriaceae isolated from Antarctic seawater. Int J Syst Evol Microbiol 2013;63:3451–3456 [CrossRef][PubMed]
    [Google Scholar]
  9. Zhang Z, Gao X, Qiao Y, Wang Y, Zhang XH. Muricauda pacifica sp. nov., isolated from seawater of the South Pacific Gyre. Int J Syst Evol Microbiol 2015;65:4087–4092 [CrossRef][PubMed]
    [Google Scholar]
  10. Yang C, Li Y, Guo Q, Lai Q, Wei J et al. Muricauda zhangzhouensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2013;63:2320–2325 [CrossRef][PubMed]
    [Google Scholar]
  11. Yu T, Yin Q, Song X, Zhao R, Shi X et al. Aquimarina longa sp. nov., isolated from the seawater of South Pacific Gyre. Int J Syst Evol Microbiol 2012;63:1235–1240[CrossRef]
    [Google Scholar]
  12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  13. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  18. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.19–33
    [Google Scholar]
  19. Bernardet JF, Nakagawa Y, Holmes B.Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  20. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.330–393
    [Google Scholar]
  21. Hsu SC, Lockwood JL. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 1975;29:422–426[PubMed]
    [Google Scholar]
  22. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  23. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  24. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[CrossRef]
    [Google Scholar]
  25. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003;49:345–349 [CrossRef][PubMed]
    [Google Scholar]
  26. Moore ERB, Arnscheidt A, Krüger A, Strömpl C, Mau M et al. Simplified protocols for the preparation of genomic DNA from bacterial cultures. In Akkermans ADL, van Elsas JD, de Bruijn FJ. (editors) Molecular Microbial Ecology Manual 1.6vol. 1 Kluwer: Dordrecht; 1999; pp.1–15
    [Google Scholar]
  27. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001792
Loading
/content/journal/ijsem/10.1099/ijsem.0.001792
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error