1887

Abstract

Strain KUDC4121 was isolated from the rhizosphere of Acer okamotoanum, a plant native to the Korean island of Ulleungdo. The strain was a Gram-stain-positive, non-spore-forming, non-motile, rod-shaped bacterium that can grow at 18–37 °C and pH 6.0–7.5, with optimum growth at 30 °C and pH 7.0. It grew on tryptic soy agar containing less than 0.5 % (w/v) NaCl and in R2A broth. Cell length ranged from 2.0 to 2.5 µm. Strain KUDC4121 was oxidase- and catalase-positive and did not hydrolyse starch or casein. The genomic G+C content was 48.8 mol%. The major fatty acids were anteiso-C15 : 0 and iso-C16 : 0. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain KUDC4121 belongs to the genus Paenibacillus . The closest type strain was Paenibacillus chondroitinus DSM 5051, with 97.8 % similarity, followed by Paenibacillus alginolyticus DSM 5050 (97.6 %), Paenibacillus ferrarius CY1 (97.5 %), Paenibacillus pocheonensis Gsoil 1138 (97.5 %), Paenibacillus frigoriresistens YIM 016 (97.5 %), Paenibacillus pectinilyticus RCB-08 (97.2 %) and Paenibacillus aestuarii CJ25 (96.9 %). Based on its phenotypic properties and phylogenetic and genetic data, strain KUDC4121 should be considered to represent a novel species of the genus Paenibacillus , for which the name Paenibacillus aceris sp. nov. is proposed. The type strain is KUDC4121 (=KCTC 13870=DSM 24950).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001748
2017-05-05
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/1039.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001748&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993;64:253–260[PubMed][CrossRef]
    [Google Scholar]
  2. Hoon C, Soo-Young P, Choong-Min RF, Seung-Hwan P, Park CS. Diversity of root-associated Paenibacillus spp. in winter crops from the southern part of Korea. J Microbiol Biotechnol 2005;15:1286–1298
    [Google Scholar]
  3. Baik KS, Lim CH, Choe HN, Kim EM, Seong CN. Paenibacillus rigui sp. nov., isolated from a freshwater wetland. Int J Syst Evol Microbiol 2011;61:529–534 [CrossRef][PubMed]
    [Google Scholar]
  4. Glaeser SP, Falsen E, Busse HJ, Kämpfer P. Paenibacillus vulneris sp. nov., isolated from a necrotic wound. Int J Syst Evol Microbiol 2013;63:777–782 [CrossRef][PubMed]
    [Google Scholar]
  5. Scheldeman P, Goossens K, Rodriguez-Diaz M, Pil A, Goris J et al. Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 2004;54:885–891 [CrossRef][PubMed]
    [Google Scholar]
  6. Saha P, Mondal AK, Mayilraj S, Krishnamurthi S, Bhattacharya A et al. Paenibacillus assamensis sp. nov., a novel bacterium isolated from a warm spring in Assam, India. Int J Syst Evol Microbiol 2005;55:2577–2581 [CrossRef][PubMed]
    [Google Scholar]
  7. Rivas R, Mateos PF, Martínez-Molina E, Velázquez E. Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. Int J Syst Evol Microbiol 2005;55:405–408 [CrossRef][PubMed]
    [Google Scholar]
  8. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997;47:289–298 [CrossRef][PubMed]
    [Google Scholar]
  9. Ash C, Priest FG, Collins MD. Paenibacillus gen. nov. and Paenibacillus polymyxa comb. nov In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 51. Int J Syst Evol Microbiol 1994;44:852
    [Google Scholar]
  10. Judicial Commission of the International Committee for Systematics of Prokaryotes The type species of the genus Paenibacillus Ash et al. 1994 is Paenibacillus polymyxa. Opinion 77. Int J Syst Evol Microbiol 2005;55:513 [CrossRef][PubMed]
    [Google Scholar]
  11. Yoon JH, Kang SJ, Lee SY, Lee MH, Oh TK. Virgibacillus dokdonensis sp. nov., isolated from a Korean island, Dokdo, located at the edge of the East Sea in Korea. Int J Syst Evol Microbiol 2005;55:1833–1837 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  13. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  14. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  15. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132[CrossRef]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  18. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969;18:1–32 [CrossRef]
    [Google Scholar]
  19. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.696 Seattle, WA: Department of Genome Sciences and Department of Biology University of Washington; 2008
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  21. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  22. Yoon JH, Lee ST, Park YH. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 1998;48 Pt 1:187–194 [CrossRef][PubMed]
    [Google Scholar]
  23. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  24. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic Acid-Deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  25. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Brenner DJ, Grimont PAD et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  26. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria University press: 1965
    [Google Scholar]
  27. Terleckyj B, Willett NP, Shockman GD. Growth of several cariogenic strains of oral streptococci in a chemically defined medium. Infect Immun 1975;11:649–655[PubMed]
    [Google Scholar]
  28. Lee J, Shin NR, Jung MJ, Roh SW, Kim MS et al. Paenibacillus oceanisediminis sp. nov. isolated from marine sediment. Int J Syst Evol Microbiol 2013;63:428–434 [CrossRef][PubMed]
    [Google Scholar]
  29. Wu X, Fang H, Qian C, Wen Y, Shen X et al. Paenibacillus tianmuensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011;61:1133–1137 [CrossRef][PubMed]
    [Google Scholar]
  30. Yoon MH, Ten LN, Im WT. Paenibacillus ginsengarvi sp. nov., isolated from soil from ginseng cultivation. Int J Syst Evol Microbiol 2007;57:1810–1814 [CrossRef][PubMed]
    [Google Scholar]
  31. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[CrossRef]
    [Google Scholar]
  32. Shin YK, Lee J, Chun C, Kim H, Park Y. Notes: isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T. J Microbiol Biotechnol 1996;6:68–69
    [Google Scholar]
  33. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: Microbial ID; 1990
    [Google Scholar]
  34. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  35. Kawamoto I, Oka T, Nara T. Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis, and related organisms. J Bacteriol 1981;146:527–534[PubMed]
    [Google Scholar]
  36. Schumann P. 5- Peptidoglycan Structure. Methods Microbiol 2011;38:101–129[CrossRef]
    [Google Scholar]
  37. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006;56:781–786 [CrossRef][PubMed]
    [Google Scholar]
  38. Kittiwongwattana C, Thawai C. Paenibacillus lemnae sp. nov., an endophytic bacterium of duckweed (Lemna aequinoctialis). Int J Syst Evol Microbiol 2015;65:107–112 [CrossRef][PubMed]
    [Google Scholar]
  39. Park DS, Jeong WJ, Lee KH, Oh HW, Kim BC et al. Paenibacillus pectinilyticus sp. nov., isolated from the gut of Diestrammena apicalis. Int J Syst Evol Microbiol 2009;59:1342–1347 [CrossRef][PubMed]
    [Google Scholar]
  40. Baek SH, Yi TH, Lee ST, Im WT. Paenibacillus pocheonensis sp. nov., a facultative anaerobe isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2010;60:1163–1167 [CrossRef][PubMed]
    [Google Scholar]
  41. Cao Y, Chen F, Li Y, Wei S, Wang G. Paenibacillus ferrarius sp. nov., isolated from iron mineral soil. Int J Syst Evol Microbiol 2015;65:165–170 [CrossRef][PubMed]
    [Google Scholar]
  42. Ming H, Nie GX, Jiang HC, Yu TT, Zhou EM et al. Paenibacillus frigoriresistens sp. nov., a novel psychrotroph isolated from a peat bog in Heilongjiang, Northern China. Antonie van Leeuwenhoek 2012;102:297–305 [CrossRef][PubMed]
    [Google Scholar]
  43. Bae JY, Kim KY, Kim JH, Lee K, Cho JC et al. Paenibacillus aestuarii sp. nov., isolated from an estuarine wetland. Int J Syst Evol Microbiol 2010;60:644–647 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001748
Loading
/content/journal/ijsem/10.1099/ijsem.0.001748
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error