1887

Abstract

A Gram-stain-negative, motile, non-spore-forming bacterium, designated strain Y4G10-17, was isolated from the saline–alkali farmland top soil, Inner Mongolia, northern China. Strain Y4G10-17 could grow at 4–45 °C (with 30 °C as the optimal temperature), pH 6.0–12.0 (optimal at pH 9.0) and in the presence of 1.0–12.0 % (w/v) NaCl (optimal at 4.0–6.0 %). Phylogenetic analysis based on the eight different copies of the 16S rRNA gene sequences revealed that strain Y4G10-17 shared the highest sequence similarity with Aliidiomarina maris CF12-14, 97.93–98.66 %, and lower than 97.0 % sequence similarity with all other type strains. Its major cellular fatty acids contained iso-C15 : 0, iso-C17 : 0, summed feature 9 (iso-C17 : 1ω9c and/or C16 : 0 10-methyl), iso-C15 : 1 F, iso-C11 : 0 3-OH and summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c). Q-8 was the predominantubiquinone. The major polar lipids of strain Y4G10-17 were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unknown lipids and one unknown aminolipid. The genomic DNA G+C content was 49.3 mol%. DNA–DNA hybridization revealed that strain Y4G10-17 showed 20.2±5 % genomic DNA relatedness with its close relative A. maris CF12-14. Based on the phenotypic, phylogenetic and genotypic characteristics, strain Y4G10-17 represents a novel species within the genus Aliidiomarina , for which the name Aliidiomarina soli sp. nov. is proposed. The type strain is Y4G10-17 (=CGMCC 1.15759=KCTC 52381).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001709
2017-04-03
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/3/724.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001709&mimeType=html&fmt=ahah

References

  1. Huang SP, Chang HY, Chen JS, Jean WD, Shieh WY. Aliidiomarina taiwanensis gen. nov., sp. nov., isolated from shallow coastal water. Int J Syst Evol Microbiol 2012;62:155–161 [CrossRef][PubMed]
    [Google Scholar]
  2. Srinivas TN, Nupur, Anil Kumar P. Aliidiomarina haloalkalitolerans sp. nov., a marine bacterium isolated from coastal surface seawater. Antonie van Leeuwenhoek 2012;101:761–768[CrossRef]
    [Google Scholar]
  3. Amoozegar MA, Shahinpei A, Shahzadeh Fazeli SA, Schumann P, Spröer C et al. Aliidiomarina iranensis sp. nov., a haloalkaliphilic bacterium from a coastal-marine wetland. Int J Syst Evol Microbiol 2016;66:2099–2105 [CrossRef][PubMed]
    [Google Scholar]
  4. Chiu HH, Rogozin DY, Huang SP, Degermendzhy AG, Shieh WY et al. Aliidiomarina shirensis sp. nov., a halophilic bacterium isolated from Shira Lake in Khakasia, southern Siberia, and a proposal to transfer Idiomarina maris to the genus Aliidiomarina. Int J Syst Evol Microbiol 2014;64:1334–1339 [CrossRef][PubMed]
    [Google Scholar]
  5. Zhang Y-J, Zhang X-Y, Zhao H-L, Zhou M-Y, Li H-J et al. Idiomarina maris sp. nov., a marine bacterium isolated from sediment. Int J Syst Evol Microbiol 2012;62:370–375 [CrossRef][PubMed]
    [Google Scholar]
  6. Farooqui SM, Wright MH, Greene AC. Aliidiomarina minuta sp. nov., a haloalkaliphilic bacterium that forms ultra-small cells under non-optimal conditions. Antonie van Leeuwenhoek 2016;109:83–93 [CrossRef][PubMed]
    [Google Scholar]
  7. Wang G, Wu H, Zhang X, Zhang H, Yang X et al. Aliidiomarina sanyensis sp. nov., a hexabromocyclododecane assimilating bacterium from the pool of Spirulina platensis cultivation, Sanya, China. Antonie van Leeuwenhoek 2013;104:309–314 [CrossRef][PubMed]
    [Google Scholar]
  8. Wang YN, Cai H, Yu SL, Wang ZY, Liu J et al. Halomonas gudaonensis sp. nov., isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 2007;57:911–915 [CrossRef][PubMed]
    [Google Scholar]
  9. Thompson JD, Gibson TJ, Plewniak F, Jeanpougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef]
    [Google Scholar]
  10. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  11. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  12. Rzhetsky A, Nei M. A simple method for estimating and testing Minimum-Evolution trees. Mol Biol Evol 1992;9:945–967
    [Google Scholar]
  13. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993;10:1073–1095[PubMed]
    [Google Scholar]
  14. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 2016; doi:10.1099/ijsem.0.001755
    [Google Scholar]
  17. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  18. Mandel M, Marmur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968;12B:195[CrossRef]
    [Google Scholar]
  19. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  20. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983;4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  21. Sasser M. Identification of Bacteria By Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  22. Kates M. Techniques of Lipidology, 2nd ed. Amsterdam: Elsevier; 1986
    [Google Scholar]
  23. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[CrossRef]
    [Google Scholar]
  24. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  25. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[CrossRef]
    [Google Scholar]
  26. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  27. Fraser SL, Jorgensen JH. Reappraisal of the antimicrobial susceptibilities of Chtyseobacterium and Flavobacterium species and methods for reliable susceptibility testing. Antimicrob Agents Chmother 1997;41:2738–2741
    [Google Scholar]
  28. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (In Chinese); 2001
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001709
Loading
/content/journal/ijsem/10.1099/ijsem.0.001709
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error