1887

Abstract

A bacterial isolate, designated strain S37, was isolated from the rhizosphere of oil palm (Elaeis guineensis). Strain S37 was found to be Gram-stain-negative, aerobic, motile and rod shaped. Based on 16S rRNA gene sequence analysis, strain S37 was most closely related to Devosia albogilva IPL15 (97.3 %), Devosia chinhatensis IPL18 (96.8 %) and Devosia subaequoris HST3-14 (96.5 %). The G+C content of the genomic DNA was 63.0 mol%, and dominant cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), 11-methyl C18 : 1ω7c and C16 : 0. The predominant isoprenoid quinone was ubiquinone-10 (Q-10), and the major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, glycolipid and phospholipids. Based on the polyphasic taxonomic data, it is clear that strain S37 represents a novel species of the genus Devosia within the family Hyphomicrobiaceae , for which we propose the name Devosia elaeis sp. nov., with strain S37 (=TBRC 5145=LMG 29420) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001683
2017-05-05
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/851.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001683&mimeType=html&fmt=ahah

References

  1. Foster JW. Microbiological aspects of riboflavin. J Bacteriol 1944;47:27–41
    [Google Scholar]
  2. Nakagawa Y, Sakane T, Yokota A. Transfer of ‘Pseudomonas riboflavina’ (Foster 1944), a Gram-negative, motile rod with long-chain 3-hydroxy fatty acids, to Devosia riboflavina gen. nov., sp. nov., nom. rev. Int J Syst Evol Microbiol 1996;46:16–22
    [Google Scholar]
  3. du J, Kook M, Akter S, Singh H, Won K et al. Devosia humi sp. nov., isolated from soil of a Korean pine (Pinus koraiensis) garden. Int J Syst Evol Microbiol 2016;66:341–346 [CrossRef][PubMed]
    [Google Scholar]
  4. Ryu SH, Chung BS, Le NT, Jang HH, Yun PY et al. Devosia geojensis sp. nov., isolated from diesel-contaminated soil in Korea. Int J Syst Evol Microbiol 2008;58:633–636 [CrossRef][PubMed]
    [Google Scholar]
  5. Yoo SH, Weon HY, Kim BY, Hong SB, Kwon SW et al. Devosia soli sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 2006;56:2689–2692 [CrossRef][PubMed]
    [Google Scholar]
  6. Yoon JH, Kang SJ, Park S, Oh TK. Devosia insulae sp. nov., isolated from soil, and emended description of the genus Devosia. Int J Syst Evol Microbiol 2007;57:1310–1314 [CrossRef][PubMed]
    [Google Scholar]
  7. Zhang DC, Redzic M, Liu HC, Zhou YG, Schinner F et al. Devosia psychrophila sp. nov. and Devosia glacialis sp. nov., from alpine glacier cryoconite, and an emended description of the genus Devosia. Int J Syst Evol Microbiol 2012;62:710–715 [CrossRef][PubMed]
    [Google Scholar]
  8. Kumar M, Verma M, Lal R. Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. Int J Syst Evol Microbiol 2008;58:861–865 [CrossRef][PubMed]
    [Google Scholar]
  9. Verma M, Kumar M, Dadhwal M, Kaur J, Lal R. Devosia albogilva sp. nov. and Devosia crocina sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 2009;59:795–799 [CrossRef][PubMed]
    [Google Scholar]
  10. Vanparys B, Heylen K, Lebbe L, De Vos P. Devosia limi sp. nov., isolated from a nitrifying inoculum. Int J Syst Evol Microbiol 2005;55:1997–2000 [CrossRef][PubMed]
    [Google Scholar]
  11. Jia YY, Sun C, Pan J, Zhang WY, Zhang XQ et al. Devosia pacifica sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014;64:2637–2641 [CrossRef][PubMed]
    [Google Scholar]
  12. Lee SD. Devosia subaequoris sp. nov., isolated from beach sediment. Int J Syst Evol Microbiol 2007;57:2212–2215 [CrossRef][PubMed]
    [Google Scholar]
  13. Galatis H, Martin K, Kämpfer P, Glaeser SP. Devosia epidermidihirudinis sp. nov. isolated from the surface of a medical leech. Antonie van Leeuwenhoek 2013;103:1165–1171 [CrossRef][PubMed]
    [Google Scholar]
  14. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 2013;11:789–799 [CrossRef][PubMed]
    [Google Scholar]
  15. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  17. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  18. Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 1992;9:678–687[PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  20. Takahashi K, Nei M. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol 2000;17:1251–1258 [CrossRef][PubMed]
    [Google Scholar]
  21. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  23. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Microbiol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  24. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  25. Gordon RE, Barnett DA, Handerhan JE, Pang CHN. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Evol Microbiol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  26. Miller JM, Wright JW. Spot indole test: evaluation of four reagents. J Clin Microbiol 1982;15:589–592[PubMed]
    [Google Scholar]
  27. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001683
Loading
/content/journal/ijsem/10.1099/ijsem.0.001683
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error