1887

Abstract

During the study of hydrocarbon-degrading bacteria in the oil-contaminated soil of Biratnagar, Morang, Nepal, a yellow-coloured, Gram-staining-negative, aerobic, non-motile, and rod-shaped bacterium, designated strain C-5-3, was isolated. This strain was characterized taxonomically by a polyphasic approach. Based on the 16S rRNA gene sequence analysis, strain C-5-3 belonged to the genus Chryseobacterium and was closely related to Chryseobacterium profundimaris DY46 (98.19 % sequence similarity), Chryseobacterium takakiae AG1-2 (98.15 % sequence similarity), Chryseobacterium taiwanense BCRC 17412 (98.14 % sequence similarity), Chryseobacterium camelliae THG C4-1 (97.73 % sequence similarity) and Chryseobacterium hispalense DSM 25574 (97.60 % sequence similarity). The predominant respiratory quinone was menaquinone-6, and phosphatidylethanolamine was the major polar lipid. The predominant fatty acids of strain C-5-3 were iso-C15 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), iso-C17 : 0 3-OH and summed feature 9 (iso- C17 : 1ω9c and/or C16 : 0 10-methyl). The genomic DNA G+C content of this novel strain was 38.6 mol%. The DNA–DNA relatedness between strain C-5-3 and Chryseobacterium profundimaris JCM 19801, C. takakiae DSM 26898, C. taiwanense KACC 13400, C. camelliae KACC 16985 and C. hispalense DSM 25574 was 53.3, 42.7, 47.3, 33.0 and 28.0 %, respectively. The morphological, physiological, chemotaxonomic and phylogenetic analyses clearly distinguished this strain from its closest phylogenetic neighbours. Thus, strain C-5-3 represents a novel species of the genus Chryseobacterium , for which the name Chryseobacterium nepalense sp. nov. is proposed. The type strain is C-5-3 (=KEMB 9005-411=KACC 18907=JCM 31469).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001680
2017-04-03
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/3/646.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001680&mimeType=html&fmt=ahah

References

  1. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B. New perspectives in the classification of the flavobacteria - description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 1994;44:827–831 [CrossRef]
    [Google Scholar]
  2. Kämpfer P, Vaneechoutte M, Lodders N, de Baere T, Avesani V et al. Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. Int J Syst Evol Microbiol 2009;59:2421–2428 [CrossRef][PubMed]
    [Google Scholar]
  3. Zhao R, Chen XY, Li XD, Chen ZL, Li YH. Chryseobacterium takakiae sp. nov., a member of the phylum Bacteroidetes isolated from Takakia lepidozioides. Int J Syst Evol Microbiol 2015;65:71–76 [CrossRef][PubMed]
    [Google Scholar]
  4. Xu L, Huo YY, Li ZY, Wang CS, Oren A et al. Chryseobacterium profundimaris sp. nov., a new member of the family Flavobacteriaceae isolated from deep-sea sediment. Antonie van Leeuwenhoek 2015;107:979–989 [CrossRef][PubMed]
    [Google Scholar]
  5. Tai CJ, Kuo HP, Lee FL, Chen HK, Yokota A et al. Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. Int J Syst Evol Microbiol 2006;56:1771–1776 [CrossRef][PubMed]
    [Google Scholar]
  6. Kook M, Son HM, Ngo HT, Yi TH. Chryseobacterium camelliae sp. nov., isolated from green tea. Int J Syst Evol Microbiol 2014;64:851–857 [CrossRef][PubMed]
    [Google Scholar]
  7. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013;63:4386–4395 [CrossRef][PubMed]
    [Google Scholar]
  8. Cho SH, Lee KS, Shin DS, Han JH, Park KS et al. Four new species of Chryseobacterium from the rhizosphere of coastal sand dune plants, Chryseobacterium elymi sp. nov., Chryseobacterium hagamense sp. nov., Chryseobacterium lathyri sp. nov. and Chryseobacterium rhizosphaerae sp. nov. Syst Appl Microbiol 2010;33:122–127 [CrossRef][PubMed]
    [Google Scholar]
  9. Yang F, Liu HM, Zhang R, Chen DB, Wang X et al. Chryseobacterium shandongense sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015;65:1860–1865 [CrossRef][PubMed]
    [Google Scholar]
  10. Pham VH, Kim J. Cultivation of unculturable soil bacteria. Trends Biotechnol 2012;30:475–484 [CrossRef][PubMed]
    [Google Scholar]
  11. Chaudhary DK, Kim J. Novosphingobium naphthae sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 2016;66:3170–3176 [CrossRef][PubMed]
    [Google Scholar]
  12. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218 [CrossRef]
    [Google Scholar]
  13. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16s rRNA genes. Appl Environ Microbiol 2008;74:2461–2470 [CrossRef][PubMed]
    [Google Scholar]
  14. Yoon SH, Sm H, Kwon S, Lim J, Kim et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol In Press
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  16. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  23. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P. (editor) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981; pp.21–33
    [Google Scholar]
  24. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995;61:3756–3758[PubMed]
    [Google Scholar]
  25. Chaudhary DK, Kim J. Arvibacter flaviflagrans gen. nov., sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016;66:4347–4354 [CrossRef][PubMed]
    [Google Scholar]
  26. Breznak JA, Costilow RN. Physicochemical factors in growth. In Reddy C, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.309–329
    [Google Scholar]
  27. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al. Novosphingobium arabidopsis sp. nov., a DDT-resistant bacterium isolated from the rhizosphere of Arabidopsis thaliana. Int J Syst Evol Microbiol 2014;64:594–598 [CrossRef][PubMed]
    [Google Scholar]
  28. Chaudhary DK, Kim J. Sphingomonas naphthae sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2016;66:2847–2852 [CrossRef][PubMed]
    [Google Scholar]
  29. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. et al (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: ASM Press; 2007; pp.330–393
    [Google Scholar]
  30. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  31. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  32. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia Coeliaca, Nocardia autotrophica, and the Nocardin Strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  33. Kim SJ, Ahn JH, Weon HY, Hong SB, Seok SJ et al. Parasegetibacter terrae sp. nov., isolated from paddy soil and emended description of the genus Parasegetibacter. Int J Syst Evol Microbiol 2015;65:113–116 [CrossRef][PubMed]
    [Google Scholar]
  34. Reichenbach H. The order Cytophagales. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH. (editors) The Prokaryotes, 2nd ed.vol. 4 New York: Springer; 1992; pp3631–3675[CrossRef]
    [Google Scholar]
  35. Dahal RH, Kim J. Rhabdobacter roseus gen. nov., sp. nov., isolated from soil. Int J Syst Evol Microbiol 2016;66:308–314 [CrossRef][PubMed]
    [Google Scholar]
  36. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc; 1990; MIDI Technical Note 101
    [Google Scholar]
  37. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  38. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316–354[PubMed]
    [Google Scholar]
  39. Komagata K, Suzuki K. Lipids and cell wall analysis in bacterial systematics. Methods Microbiol 1988;19:161–207[CrossRef]
    [Google Scholar]
  40. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  41. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  42. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001680
Loading
/content/journal/ijsem/10.1099/ijsem.0.001680
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error