1887

Abstract

Strain QLW-P1FAT50C-4, isolated from a shallow, acidic freshwater pond located in the Austrian Alps at an altitude of 1300 m, was characterized by investigation of phenotypic, chemotaxonomic and genomic traits. As shown previously, phylogenetic analyses based on 16S rRNA gene sequences placed the strain in the cryptic species complex PnecC within the genus . The major fatty acids of the strain were Cω7 and Cω7. The strain has a genome of 2.23 Mbp with a DNA G+C content of 44.9 mol%. The strain encodes a seemingly complete gene cluster for anoxygenic photosynthesis but lacks typical genes for CO assimilation. In order to resolve the phylogenetic position of the strain within the species complex PnecC, concatenated partial sequences of eight housekeeping genes were analysed. The phylogenetic reconstruction obtained did not place strain QLW-P1FAT50C-4 close to any of the five previously described species within subcluster PnecC. Pairwise average nucleotide identity (ANI) comparisons of whole-genome sequences suggested that strain QLW-P1FAT50C-4 (=DSM 24008=CIP 111100) represents a novel species, for which we propose the name sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001637
2017-02-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/2/379.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001637&mimeType=html&fmt=ahah

References

  1. Heckmann K, Schmidt HJ. Polynucleobacter necessarius gen. nov., sp. nov., an obligately endosymbiotic bacterium living in the cytoplasm of Euplotes aediculatus. Int J Syst Bacteriol 1987;37:456–457 [CrossRef]
    [Google Scholar]
  2. Bahr M, Hobbie JE, Sogin ML. Bacterial diversity in an arctic lake: a freshwater SAR11 cluster. Aquatic Microbial Ecology 1996;11:271–277 [CrossRef]
    [Google Scholar]
  3. Hahn MW. Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol 2003;69:5248–5254 [CrossRef][PubMed]
    [Google Scholar]
  4. Percent SF, Frischer ME, Vescio PA, Duffy EB, Milano V et al. Bacterial community structure of acid-impacted lakes: what controls diversity?. Appl Environ Microbiol 2008;74:1856–1868 [CrossRef][PubMed]
    [Google Scholar]
  5. Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han SK. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology 2002;28:141–155 [CrossRef]
    [Google Scholar]
  6. Hahn MW, Schmidt J, Pitt A, Taipale SJ, Lang E. Reclassification of four Polynucleobacter necessarius strains as representatives of Polynucleobacter asymbioticus comb. nov., Polynucleobacter duraquae sp. nov., Polynucleobacter yangtzensis sp. nov. and Polynucleobacter sinensis sp. nov., and emended description of Polynucleobacter necessarius. Int J Syst Evol Microbiol 2016;66:2883–2892 [CrossRef][PubMed]
    [Google Scholar]
  7. Hahn MW, Jezberová J, Koll U, Saueressig-Beck T, Schmidt J. Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences. ISME J 2016;10:1642–1655 [CrossRef][PubMed]
    [Google Scholar]
  8. Boscaro V, Felletti M, Vannini C, Ackerman MS, Chain PS et al. Polynucleobacter necessarius, a model for genome reduction in both free-living and symbiotic bacteria. Proc Natl Acad Sci USA 2013;110:18590–18595 [CrossRef][PubMed]
    [Google Scholar]
  9. Hahn MW, Pöckl M, Wu QL. Low intraspecific diversity in a Polynucleobacter subcluster population numerically dominating bacterioplankton of a freshwater pond. Appl Environ Microbiol 2005;71:4539–4547 [CrossRef][PubMed]
    [Google Scholar]
  10. Hahn MW, Scheuerl T, Jezberová J, Koll U, Jezbera J et al. The passive yet successful way of planktonic life: genomic and experimental analysis of the ecology of a free-living Polynucleobacter population. PLoS One 2012;7:e32772 [CrossRef][PubMed]
    [Google Scholar]
  11. Hahn MW, Stadler P, Wu QL, Pöckl M. The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 2004;57:379–390 [CrossRef][PubMed]
    [Google Scholar]
  12. Hahn MW, Lünsdorf H, Wu Q, Schauer M, Höfle MG et al. Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 2003;69:1442–1451 [CrossRef][PubMed]
    [Google Scholar]
  13. Hahn MW, Lang E, Brandt U, Wu QL, Scheuerl T. Emended description of the genus Polynucleobacter and the species Polynucleobacter necessarius and proposal of two subspecies, P. necessarius subsp. necessarius subsp. nov. and P. necessarius subsp. asymbioticus subsp. nov. Int J Syst Evol Microbiol 2009;59:2002–2009 [CrossRef][PubMed]
    [Google Scholar]
  14. Hahn MW, Lang E, Tarao M, Brandt U. Polynucleobacter rarus sp. nov., a free-living planktonic bacterium isolated from an acidic lake. Int J Syst Evol Microbiol 2011;61:781–787 [CrossRef][PubMed]
    [Google Scholar]
  15. Hahn MW, Lang E, Brandt U, Spröer C. Polynucleobacter acidiphobus sp. nov., a representative of an abundant group of planktonic freshwater bacteria. Int J Syst Evol Microbiol 2011;61:788–794 [CrossRef][PubMed]
    [Google Scholar]
  16. Hahn MW, Minasyan A, Lang E, Koll U, Spröer C. Polynucleobacter difficilis sp. nov., a planktonic freshwater bacterium affiliated with subcluster B1 of the genus Polynucleobacter. Int J Syst Evol Microbiol 2012;62:376–383 [CrossRef][PubMed]
    [Google Scholar]
  17. Hahn MW, Lang E, Brandt U, Lünsdorf H, Wu QL et al. Polynucleobacter cosmopolitanus sp. nov., free-living planktonic bacteria inhabiting freshwater lakes and rivers. Int J Syst Evol Microbiol 2010;60:166–173 [CrossRef][PubMed]
    [Google Scholar]
  18. Meincke L, Copeland A, Lapidus A, Lucas S, Berry KW et al. Complete genome sequence of Polynucleobacter necessarius subsp. asymbioticus type strain (QLW-P1DMWA-1T). Stand Genomic Sci 2012;6:74–83 [CrossRef][PubMed]
    [Google Scholar]
  19. Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E et al. IMG: the integrated microbial Genomes database and comparative analysis system. Nucleic Acids Res 2012;40:D115–D122 [CrossRef][PubMed]
    [Google Scholar]
  20. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; in press
    [Google Scholar]
  21. Wu QL, Hahn MW. Differences in structure and dynamics of Polynucleobacter communities in a temperate and a subtropical lake, revealed at three phylogenetic levels. FEMS Microbiol Ecol 2006;57:67–79 [CrossRef][PubMed]
    [Google Scholar]
  22. Jezbera J, Jezberová J, Brandt U, Hahn MW. Ubiquity of Polynucleobacter necessarius subspecies asymbioticus results from ecological diversification. Environ Microbiol 2011;13:922–931 [CrossRef][PubMed]
    [Google Scholar]
  23. Hahn MW, Koll U, Jezberová J, Camacho A. Global phylogeography of pelagic Polynucleobacter bacteria: restricted geographic distribution of subgroups, isolation by distance and influence of climate. Environ Microbiol 2015;17:829–840 [CrossRef][PubMed]
    [Google Scholar]
  24. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  25. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005;102:2567–2572 [CrossRef][PubMed]
    [Google Scholar]
  26. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007;10:504–509 [CrossRef][PubMed]
    [Google Scholar]
  27. Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 2006;361:1929–1940 [CrossRef][PubMed]
    [Google Scholar]
  28. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015;38:209–216 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001637
Loading
/content/journal/ijsem/10.1099/ijsem.0.001637
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error