1887

Abstract

A Gram-stain-positive, facultatively anaerobic, thermophilic bacterium, designated ZQ18-1, was isolated from a high temperature daqu sample collected from the sesame-flavour liquor-making process. Oval endospores were formed at the centre of cells with swollen sporangia. The isolate was able to grow at temperatures of 20–60 °C (optimum growth at 50 °C), at pH 4–9 (optimum growth at pH 8) and in the presence of 0–10 % (w/v) NaCl (optimum growth with 2 % NaCl). Glucose and galactose were major cell-wall sugars, and -diaminopimelic acid was the diagnostic amino acid. The major polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol and three glycolipids. The major cellular fatty acids were anteiso-C and iso-C, and the predominant menaquinone was MK-7. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ZQ18-1 was most closely related to DLS-06, YN3, 607, ATCC 53909, UG-2, DSM 11697 and NRIC 1133. Strain ZQ18-1 showed low DNA–DNA relatedness (40.7, 23.1, 46.5, 27.2, 45.6, 33.7 and 55.1 %) with the strains mentioned above. Based on morphological characteristics, chemotaxonomic characteristics, DNA–DNA hybridization data and physiological properties, strain ZQ18-1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is ZQ18-1 (=DSM 28236=CICC 10824). An emended description of the genus is provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001417
2016-11-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4723.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001417&mimeType=html&fmt=ahah

References

  1. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  3. Eck R. V, Dayhoff M. O.. 1966; Atlas of Protein Sequence and Structure Silver Springs, MD: National Biomedical Research Foundation;
    [Google Scholar]
  4. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  6. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  7. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) 1994; Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Gregersen T.. 1978; Rapid method for distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol5:123–127 [CrossRef]
    [Google Scholar]
  9. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A.. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol46:234–239 [CrossRef][PubMed]
    [Google Scholar]
  10. Hasegawa T., Takizawa M., Tanida S.. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol29:319–322 [CrossRef]
    [Google Scholar]
  11. Hatayama K., Shoun H., Ueda Y., Nakamura A.. 2006; Tuberibacillus calidus gen. nov., sp. nov., isolated from a compost pile and reclassification of Bacillus naganoensis Tomimura et al. 1990 as Pullulanibacillus naganoensis gen. nov., comb. nov. and Bacillus laevolacticus Andersch et al. 1994 as Sporolactobacillus laevolacticus comb. nov. Int J Syst Evol Microbiol56:2545–2551 [CrossRef][PubMed]
    [Google Scholar]
  12. Kitahara K., Suzuki J.. 1963; Sporolactobacillus nov. subgen. J Gen Appl Microbiol9:59–71[CrossRef]
    [Google Scholar]
  13. Lee S. D., Lee D. W.. 2009; Scopulibacillus darangshiensis gen. nov., sp. nov., isolated from rock. J Microbiol47:710–715 [CrossRef][PubMed]
    [Google Scholar]
  14. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L.. 2007; Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  16. Oren A., Garrity G. M.. 2016; List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol66:1603–1606
    [Google Scholar]
  17. Romano I., Nicolaus B., Lama L., Trabasso D., Caracciolo G., Gambacorta A.. 2001; Accumulation of osmoprotectants and lipid pattern modulation in response to growth conditions by Halomonas pantelleriense. Syst Appl Microbiol24:342–352 [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  19. Smibert R. M., Krieg N. R.. 1981; General characterization. In Manual of Methods for General Microbiology pp.409–443 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal _x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  21. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464[CrossRef]
    [Google Scholar]
  22. Wu C. Y., Zhuang L., Zhou S. G., Li F. B., He J.. 2011; Corynebacterium humireducens sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol61:882–887 [CrossRef][PubMed]
    [Google Scholar]
  23. Xiu L., Kunliang G., Hongxun Z.. 2012; Determination of microbial diversity in Daqu, a fermentation starter culture of Maotai liquor, using nested PCR-denaturing gradient gel electrophoresis. World J Microbiol Biotechnol28:2375–2381 [CrossRef][PubMed]
    [Google Scholar]
  24. Zhang C., Ao Z., Chui, Shen C., Tao W., Zhang S.. 2012; Characterization of the aroma-active compounds in Daqu: a tradition Chinese liquor starter. Eur Food Res Technol234:69–76 [CrossRef]
    [Google Scholar]
  25. Zheng X. W., Tabrizi M. R., Nout M. J. R., Han B. Z.. 2011; Daqu—a traditional Chinese liquor fermentation starter. J I Brewing117:82–90 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001417
Loading
/content/journal/ijsem/10.1099/ijsem.0.001417
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error