1887

Abstract

Strain NRRL B-41902 and three closely related strains were isolated from iceberg lettuce. The strain was found to consist of strictly aerobic, Gram-stain-negative rods that formed cocci in late stationary phase. 16S rRNA gene sequence analysis showed that strain NRRL B-41902 was most closely related to species within the genera Acinetobacter , and that a grouping of it and the three other closely related strains was most closely related to the type strain of Acinetobacter pittii, which was also confirmed through a phylogenomic analysis. Moreover, in silico DNA–DNA hybridization analysis revealed a substantial amount of genomic divergence (39.1 %) between strain NRRL B-41902 and the type strain of A. pittii , which is expected if the strains represent distinct species. Further phenotypic analysis revealed that strain NRRL B-41902 was able to utilize a combination of l-serine, citraconic acid and citramalic acid, which differentiated it from other, closely related Acinetobacter species. Therefore, strain NRRL B-41902 (=CCUG 68785) is proposed as the type strain of a novel species, Acinetobacter lactucae sp. nov.

Keyword(s): Acinetobacter
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001234
2016-09-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/9/3566.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001234&mimeType=html&fmt=ahah

References

  1. Beijerinck M. W..( 1911;). Über pigmentbildung bei essigbakterien. . Proc K Ned Akad Wet 13: 1066–1077.
    [Google Scholar]
  2. Brisou J., Prévot A. R..( 1954;). Étude de systématique bactérienne X. Révision de espèces réunies dans le genre Achromobacter. . Ann Inst Pasteur 86: 722–728.
    [Google Scholar]
  3. de Hoon M. J., Imoto S., Nolan J., Miyano S..( 2004;). Open source clustering software. . Bioinformatics 20: 1453–1454. [CrossRef] [PubMed]
    [Google Scholar]
  4. Edgar R. C..( 2004;). muscle: a multiple sequence alignment method with reduced time and space complexity. . BMC Bioinformatics 5: 113. [CrossRef] [PubMed]
    [Google Scholar]
  5. Feng G., Yang S., Wang Y., Yao Q., Zhu H..( 2014;). Acinetobacter refrigeratoris sp. nov., isolated from a domestic refrigerator. . Curr Microbiol 69: 888–893. [CrossRef] [PubMed]
    [Google Scholar]
  6. Feng G., Yang S., Wang Y., Yao Q., Zhu H..( 2015;). Erratum to:Acinetobacter refrigeratoris sp. nov., Isolated from a Domestic Refrigerator. . Curr Microbiol 70: 150. [CrossRef] [PubMed]
    [Google Scholar]
  7. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M..( 2007;). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57: 81–91. [CrossRef] [PubMed]
    [Google Scholar]
  8. Henriksen S. D..( 1973;). Moraxella, Acinetobacter, and the Mimeae. . Bacteriol Rev 37: 522–561.[PubMed]
    [Google Scholar]
  9. Kämpfer P., Kroppenstedt R. M..( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42: 989–1005. [CrossRef]
    [Google Scholar]
  10. Kang Y. S., Jung J., Jeon C. O., Park W..( 2011;). Acinetobacter oleivorans sp. nov. is capable of adhering to and growing on diesel-oil. . J Microbiol 49: 29–34. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kim M., Oh H. S., Park S. C., Chun J..( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. . Int J Syst Evol Microbiol 64: 346–351. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lane D. J..( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics , pp. 115–147. Edited by Goodfellow M., Stackebrandt E.. Chichester, UK:: John Wiley;.
    [Google Scholar]
  14. Lee H. J., Lee S. S..( 2010;). Acinetobacter kyonggiensis sp. nov., a β-glucosidase-producing bacterium, isolated from sewage treatment plant. . J Microbiol 48: 754–759. [CrossRef] [PubMed]
    [Google Scholar]
  15. Lee I., Kim Y. O., Park S. C., Chun J..( 2016;). OrthoANI: an improved algorithm and software for calculating average nucleotide identity. . Int J Syst Evol Microbiol 66: 1100–1103.[CrossRef]
    [Google Scholar]
  16. Marchesi J. R., Sato T., Weightman A. J., Martin T. A., Fry J. C., Hiom S. J., Dymock D., Wade W. G..( 1998;). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. . Appl Environ Microbiol 64: 795–799.[PubMed]
    [Google Scholar]
  17. Park M., Deck J., Foley S. L., Nayak R., Songer J. G., Seibel J. R., Khan S. A., Rooney A. P., Hecht D. W., Rafii F..( 2016;). Diversity of Clostridium perfringens isolates from various sources and prevalence of conjugative plasmids. . Anaerobe 38: 25–35. [CrossRef] [PubMed]
    [Google Scholar]
  18. Richter M., Rosselló-Móra R..( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106: 19126–19131. [CrossRef] [PubMed]
    [Google Scholar]
  19. Rooney A. P., Swezey J. L., Friedman R., Hecht D. W., Maddox C. W..( 2006;). Analysis of core housekeeping and virulence genes reveals cryptic lineages of Clostridium perfringens that are associated with distinct disease presentations. . Genetics 172: 2081–2092. [CrossRef] [PubMed]
    [Google Scholar]
  20. Rooney A. P., Price N. P., Ehrhardt C., Swezey J. L., Bannan J. D..( 2009;). Phylogeny and molecular taxonomy of the Bacillus subtilis species complex and description of Bacillus subtilis subsp. inaquosorum subsp. nov. . Int J Syst Evol Microbiol 59: 2429–2436.[CrossRef]
    [Google Scholar]
  21. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  22. Smibert R. M., Krieg N. R..( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology , pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  23. Tamura K., Nei M..( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10: 512–526.[PubMed]
    [Google Scholar]
  24. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  25. Touchon M., Cury J., Yoon E. J., Krizova L., Cerqueira G. C., Murphy C., Feldgarden M., Wortman J., Clermont D. et al.( 2014;). The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences. . Genome Biol Evol 6: 2866–2882. [CrossRef] [PubMed]
    [Google Scholar]
  26. Yoon J. H., Kim I. G., Oh T. K..( 2007;). Acinetobacter marinus sp. nov. and Acinetobacter seohaensis sp. nov., isolated from sea water of the Yellow Sea in Korea. . J Microbiol Biotechnol 17: 1743–1750.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001234
Loading
/content/journal/ijsem/10.1099/ijsem.0.001234
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error