1887

Abstract

The ample genetic diversity and variability of , and therefore its phenotypic evolution, relate not only to frequent mutation and selection but also to intra-specific recombination. Webb and Blaser applied a mathematical model to distinguish the role of selection and mutation for Lewis antigen phenotype evolution during long-term gastric colonization in infected animal hosts (mice and gerbils). To investigate the role of recombination in Lewis antigen phenotype evolution, we have developed a prior population dynamic by adding recombination term to the model. We simulate and interpret the new model simulation's results with a comparative analysis of biological aspects. The main conclusions are as follows: (i) the models and consequently the hosts with higher recombination rate require a longer time for stabilization; and (ii) recombination and mutation have opposite effects on the size of populations with phenotypes in the range of the most-fit ones (i.e. those that have a selective advantage) due to natural selection, although both can increase phenotypic diversity.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001072
2016-07-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2471.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001072&mimeType=html&fmt=ahah

References

  1. Achtman M., Azuma T., Berg D. E., Ito Y., Morelli G., Pan Z. J., Suerbaum S., Thompson S. A., van der Ende A. et al. 1999; Recombination and clonal groupings within Helicobacter pylori from different geographical regions. Mol Microbiol32:459–470 [CrossRef][PubMed]
    [Google Scholar]
  2. Atherton J. C., Tham K. T., Peek R. M., Cover T. L., Blaser M. J.. 1996; Density of Helicobacter pylori infection in vivo as assessed by quantitative culture and histology. J Infect Dis174:552–556 [CrossRef][PubMed]
    [Google Scholar]
  3. Blaser M. J., Berg D. E.. 2001; Helicobacter pylori genetic diversity and risk of human disease. J Clin Invest107:767–773 [CrossRef][PubMed]
    [Google Scholar]
  4. Blaser M. J., Atherton J. C.. 2004; Helicobacter pylori persistence: biology and disease. J Clin Invest113:321–333 [CrossRef][PubMed]
    [Google Scholar]
  5. Dorer M. S., Talarico S., Salama N. R.. 2009; Helicobacter pylori's unconventional role in health and disease. PLoS Pathog5:e1000544 [CrossRef][PubMed]
    [Google Scholar]
  6. Falush D., Kraft C., Taylor N. S., Correa P., Fox J. G., Achtman M., Suerbaum S.. 2001; Recombination and mutation during long-term gastric colonization by Helicobacter pylori: estimates of clock rates, recombination size, and minimal age. Proc Natl Acad Sci U S A98:15056–15061 [CrossRef][PubMed]
    [Google Scholar]
  7. Go M. F., Kapur V., Graham D. Y., Musser J. M.. 1996; Population genetic analysis of Helicobacter pylori by multilocus enzyme electrophoresis: extensive allelic diversity and recombinational population structure. J Bacteriol178:3934–3938[PubMed]
    [Google Scholar]
  8. Hovey J. G., Watson E. L., Langford M. L., Hildebrandt E., Bathala S., Bolland J. R., Spadafora D., Mendz G. L., McGee D. J.. 2007; Genetic microheterogeneity and phenotypic variation of Helicobacter pylori arginase in clinical isolates. BMC Microbiol7:26 [CrossRef][PubMed]
    [Google Scholar]
  9. Israel D. A., Salama N., Krishna U., Rieger U. M., Atherton J. C., Falkow S., Peek R. M.. 2001; Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc Natl Acad Sci USA98:14625–14630 [CrossRef]
    [Google Scholar]
  10. Jain K.. 2010; Time to fixation in the presence of recombination. Theor Popul Biol77:23–31 [CrossRef][PubMed]
    [Google Scholar]
  11. Kersulyte D., Chalkauskas H., Berg D. E.. 1999; Emergence of recombinant strains of Helicobacter pylori during human infection. Mol Microbiol31:31–43 [CrossRef][PubMed]
    [Google Scholar]
  12. Levin B. R., Lipsitch M., Bonhoeffer S.. 1999; Population biology, evolution, and infectious disease: convergence and synthesis. Science283:806–809 [CrossRef][PubMed]
    [Google Scholar]
  13. Lina T. T., Alzahrani S., Gonzalez J., Pinchuk I. V., Beswick E. J., Reyes V. E.. 2014; Immune evasion strategies used by Helicobacter pylori . World J Gastroenterol20:12753–12766 [CrossRef][PubMed]
    [Google Scholar]
  14. Magal P., Webb G. F.. 2000; Mutation, selection and recombination in a model of phenotype evolution. Dis Cont Dyn Sys6:221–236
    [Google Scholar]
  15. Magalhães A., Reis C. A.. 2010; Helicobacter pylori adhesion to gastric epithelial cells is mediated by glycan receptors. Braz J Med Biol Res43:611–618 [CrossRef][PubMed]
    [Google Scholar]
  16. Moradigaravand D., Engelstädter J.. 2012; The effect of bacterial recombination on adaptation on fitness landscapes with limited peak accessibility. PLoS Comput Biol8:e1002735 [CrossRef][PubMed]
    [Google Scholar]
  17. Murray J. D.. 2002; Mathematical Biology, 3rd edn. Berlin: Springer-Verlag;
    [Google Scholar]
  18. Oleastro M., Ménard A.. 2013; The role of Helicobacter pylori outer membrane proteins in adherence and pathogenesis. Biology2:1110–1134 [CrossRef][PubMed]
    [Google Scholar]
  19. Suerbaum S., Smith J. M., Bapumia K., Morelli G., Smith N. H., Kunstmann E., Dyrek I., Achtman M.. 1998; Free recombination within Helicobacter pylori . Proc Natl Acad Sci USA95:12619–12624 [CrossRef][PubMed]
    [Google Scholar]
  20. Suzuki R., Shiota S., Yamaoka Y.. 2012; Molecular epidemiology, population genetics, and pathogenic role of Helicobacter pylori . Infect Genet Evol12:203–213 [CrossRef][PubMed]
    [Google Scholar]
  21. Talebi Bezmin Abadi A.. 2016; Vaccine against Helicobacter pylori: Inevitable approach. World J Gastroenterol22:3150–3157 [CrossRef][PubMed]
    [Google Scholar]
  22. van der Ende A., Rauws E. A., Feller M., Mulder C. J., Tytgat G. N., Dankert J.. 1996; Heterogeneous Helicobacter pylori isolates from members of a family with a history of peptic ulcer disease. Gastroenterology111:638–647 [CrossRef][PubMed]
    [Google Scholar]
  23. Webb G. F., Blaser M. J.. 2001; Dynamics of bacterial phenotype selection in a colonized host. Proc Natl Acad Sci USA99:3135–3140[CrossRef]
    [Google Scholar]
  24. Wirth H. P., Yang M., Peek R. M., Höök-Nikanne J., Fried M., Blaser M. J.. 1999; Phenotypic diversity in Lewis expression of Helicobacter pylori isolates from the same host. J Lab Clin Med133:488–500 [CrossRef][PubMed]
    [Google Scholar]
  25. Wirth H. P., Yang M., Sanabria-Valentín E., Berg D. E., Dubois A., Blaser M. J.. 2006; Host Lewis phenotype-dependent Helicobacter pylori Lewis antigen expression in rhesus monkeys. FASEB J20:1534–1536 [CrossRef][PubMed]
    [Google Scholar]
  26. Yamaoka Y.. 2012; Pathogenesis of Helicobacter pylori-related gastroduodenal diseases from molecular epidemiological studies. Gastroenterol Res Pract2012:1–9[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001072
Loading
/content/journal/ijsem/10.1099/ijsem.0.001072
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error