1887

Abstract

The ample genetic diversity and variability of Helicobater pylori, and therefore its phenotypic evolution, relate not only to frequent mutation and selection but also to intra-specific recombination. Webb and Blaser applied a mathematical model to distinguish the role of selection and mutation for Lewis antigen phenotype evolution during long-term gastric colonization in infected animal hosts (mice and gerbils). To investigate the role of recombination in Lewis antigen phenotype evolution, we have developed a prior population dynamic by adding recombination term to the model. We simulate and interpret the new model simulation's results with a comparative analysis of biological aspects. The main conclusions are as follows: (i) the models and consequently the hosts with higher recombination rate require a longer time for stabilization; and (ii) recombination and mutation have opposite effects on the size of H. pylori populations with phenotypes in the range of the most-fit ones (i.e. those that have a selective advantage) due to natural selection, although both can increase phenotypic diversity.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001072
2016-07-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2471.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001072&mimeType=html&fmt=ahah

References

  1. Achtman M. , Azuma T. , Berg D. E. , Ito Y. , Morelli G. , Pan Z. J. , Suerbaum S. , Thompson S. A. , van der Ende A. et al. ( 1999;). Recombination and clonal groupings within Helicobacter pylori from different geographical regions. . Mol Microbiol 32: 459–470. [CrossRef] [PubMed]
    [Google Scholar]
  2. Atherton J. C. , Tham K. T. , Peek R. M. , Cover T. L. , Blaser M. J. . ( 1996;). Density of Helicobacter pylori infection in vivo as assessed by quantitative culture and histology. . J Infect Dis 174: 552–556. [CrossRef] [PubMed]
    [Google Scholar]
  3. Blaser M. J. , Berg D. E. . ( 2001;). Helicobacter pylori genetic diversity and risk of human disease. . J Clin Invest 107: 767–773. [CrossRef] [PubMed]
    [Google Scholar]
  4. Blaser M. J. , Atherton J. C. . ( 2004;). Helicobacter pylori persistence: biology and disease. . J Clin Invest 113: 321–333. [CrossRef] [PubMed]
    [Google Scholar]
  5. Dorer M. S. , Talarico S. , Salama N. R. . ( 2009;). Helicobacter pylori's unconventional role in health and disease. . PLoS Pathog 5: e1000544. [CrossRef] [PubMed]
    [Google Scholar]
  6. Falush D. , Kraft C. , Taylor N. S. , Correa P. , Fox J. G. , Achtman M. , Suerbaum S. . ( 2001;). Recombination and mutation during long-term gastric colonization by Helicobacter pylori: estimates of clock rates, recombination size, and minimal age. . Proc Natl Acad Sci U S A 98: 15056–15061. [CrossRef] [PubMed]
    [Google Scholar]
  7. Go M. F. , Kapur V. , Graham D. Y. , Musser J. M. . ( 1996;). Population genetic analysis of Helicobacter pylori by multilocus enzyme electrophoresis: extensive allelic diversity and recombinational population structure. . J Bacteriol 178: 3934–3938.[PubMed]
    [Google Scholar]
  8. Hovey J. G. , Watson E. L. , Langford M. L. , Hildebrandt E. , Bathala S. , Bolland J. R. , Spadafora D. , Mendz G. L. , McGee D. J. . ( 2007;). Genetic microheterogeneity and phenotypic variation of Helicobacter pylori arginase in clinical isolates. . BMC Microbiol 7: 26. [CrossRef] [PubMed]
    [Google Scholar]
  9. Israel D. A. , Salama N. , Krishna U. , Rieger U. M. , Atherton J. C. , Falkow S. , Peek R. M. . ( 2001;). Helicobacter pylori genetic diversity within the gastric niche of a single human host. . Proc Natl Acad Sci USA 98: 14625–14630. [CrossRef]
    [Google Scholar]
  10. Jain K. . ( 2010;). Time to fixation in the presence of recombination. . Theor Popul Biol 77: 23–31. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kersulyte D. , Chalkauskas H. , Berg D. E. . ( 1999;). Emergence of recombinant strains of Helicobacter pylori during human infection. . Mol Microbiol 31: 31–43. [CrossRef] [PubMed]
    [Google Scholar]
  12. Levin B. R. , Lipsitch M. , Bonhoeffer S. . ( 1999;). Population biology, evolution, and infectious disease: convergence and synthesis. . Science 283: 806–809. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lina T. T. , Alzahrani S. , Gonzalez J. , Pinchuk I. V. , Beswick E. J. , Reyes V. E. . ( 2014;). Immune evasion strategies used by Helicobacter pylori . . World J Gastroenterol 20: 12753–12766. [CrossRef] [PubMed]
    [Google Scholar]
  14. Magal P. , Webb G. F. . ( 2000;). Mutation, selection and recombination in a model of phenotype evolution. . Dis Cont Dyn Sys 6: 221–236.
    [Google Scholar]
  15. Magalhães A. , Reis C. A. . ( 2010;). Helicobacter pylori adhesion to gastric epithelial cells is mediated by glycan receptors. . Braz J Med Biol Res 43: 611–618. [CrossRef] [PubMed]
    [Google Scholar]
  16. Moradigaravand D. , Engelstädter J. . ( 2012;). The effect of bacterial recombination on adaptation on fitness landscapes with limited peak accessibility. . PLoS Comput Biol 8: e1002735. [CrossRef] [PubMed]
    [Google Scholar]
  17. Murray J. D. . ( 2002;). Mathematical Biology, , 3rd edn., Berlin:: Springer-Verlag;.
    [Google Scholar]
  18. Oleastro M. , Ménard A. . ( 2013;). The role of Helicobacter pylori outer membrane proteins in adherence and pathogenesis. . Biology 2: 1110–1134. [CrossRef] [PubMed]
    [Google Scholar]
  19. Suerbaum S. , Smith J. M. , Bapumia K. , Morelli G. , Smith N. H. , Kunstmann E. , Dyrek I. , Achtman M. . ( 1998;). Free recombination within Helicobacter pylori . . Proc Natl Acad Sci USA 95: 12619–12624. [CrossRef] [PubMed]
    [Google Scholar]
  20. Suzuki R. , Shiota S. , Yamaoka Y. . ( 2012;). Molecular epidemiology, population genetics, and pathogenic role of Helicobacter pylori . . Infect Genet Evol 12: 203–213. [CrossRef] [PubMed]
    [Google Scholar]
  21. Talebi Bezmin Abadi A. . ( 2016;). Vaccine against Helicobacter pylori: Inevitable approach. . World J Gastroenterol 22: 3150–3157. [CrossRef] [PubMed]
    [Google Scholar]
  22. van der Ende A. , Rauws E. A. , Feller M. , Mulder C. J. , Tytgat G. N. , Dankert J. . ( 1996;). Heterogeneous Helicobacter pylori isolates from members of a family with a history of peptic ulcer disease. . Gastroenterology 111: 638–647. [CrossRef] [PubMed]
    [Google Scholar]
  23. Webb G. F. , Blaser M. J. . ( 2001;). Dynamics of bacterial phenotype selection in a colonized host. . Proc Natl Acad Sci USA 99: 3135–3140.[CrossRef]
    [Google Scholar]
  24. Wirth H. P. , Yang M. , Peek R. M. , Höök-Nikanne J. , Fried M. , Blaser M. J. . ( 1999;). Phenotypic diversity in Lewis expression of Helicobacter pylori isolates from the same host. . J Lab Clin Med 133: 488–500. [CrossRef] [PubMed]
    [Google Scholar]
  25. Wirth H. P. , Yang M. , Sanabria-Valentín E. , Berg D. E. , Dubois A. , Blaser M. J. . ( 2006;). Host Lewis phenotype-dependent Helicobacter pylori Lewis antigen expression in rhesus monkeys. . FASEB J 20: 1534–1536. [CrossRef] [PubMed]
    [Google Scholar]
  26. Yamaoka Y. . ( 2012;). Pathogenesis of Helicobacter pylori-related gastroduodenal diseases from molecular epidemiological studies. . Gastroenterol Res Pract 2012: 1–9.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001072
Loading
/content/journal/ijsem/10.1099/ijsem.0.001072
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error