1887

Abstract

Two isolates of aerobic methanotrophic bacteria, strains Sph1 and Sph2, were obtained from cold methane seeps in a floodplain of the river Mukhrinskaya, Irtysh basin, West Siberia. Another morphologically and phenotypically similar methanotroph, strain OZ2, was isolated from a sediment of a subarctic freshwater lake, Archangelsk region, northern Russia. Cells of these three strains were Gram-stain-negative, light-pink-pigmented, non-motile, encapsulated, large cocci that contained an intracytoplasmic membrane system typical of type I methanotrophs. They possessed a particulate methane monooxygenase enzyme and utilized only methane and methanol. Strains Sph1, Sph2 and OZ2 were able to grow at a pH range of 4.0–8.9 (optimum at pH 6.0–7.0) and at temperatures between 2 and 36 °C. Although their temperature optimum was at 20–25 °C, these methanotrophs grew well at lower temperatures, down to 4 °C. The major cellular fatty acids were C16 : 1ω5c, C16 : 1ω6c, C16 : 1ω7c, C16 : 1ω8c, C16 : 0 and C14 : 0; the DNA G+C content was 51.4–51.9 mol%. Strains Sph1, Sph2 and OZ2 displayed nearly identical (99.1–99.7 % similarity) 16S rRNA gene sequences and belonged to the family Methylococcaceae of the class Gammaproteobacteria . The most closely related organism was Methylovulum miyakonense HT12 (96.0–96.5 % 16S rRNA gene sequence similarity and 90 % pmoA sequence similarity). The novel isolates, however, differed from Methylovulum miyakonense HT12 by cell morphology, pigmentation, absence of soluble methane monooxygenase, more active growth at low temperatures, growth over a broader pH range and higher DNA G+C content. On the basis of these differences, we propose a novel species, Methylovulum psychrotolerans sp. nov., to accommodate these methanotrophs. Strain Sph1 (=LMG 29227=VKM B-3018) is the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001046
2016-06-10
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2417.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001046&mimeType=html&fmt=ahah

References

  1. Auman A. J. , Stolyar S. , Costello A. M. , Lidstrom M. E. . ( 2000;). Molecular characterization of methanotrophic isolates from freshwater lake sediment. . Appl Environ Microbiol 66: 5259–5266. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bowman J. P. , Skerratt J. H. , Nichols P. D. , Sly L. I. . ( 1991;). Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. . FEMS Microbiol Lett 85: 15–22. [CrossRef]
    [Google Scholar]
  3. Bowman J. P. , Sly L. I. , Nichols P. D. , Hayward A. C. . ( 1993;). Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs . . Int J Syst Bacteriol 43: 735–753.[CrossRef]
    [Google Scholar]
  4. Dieser M. , Broemsen E. L. , Cameron K. A. , King G. M. , Achberger A. , Choquette K. , Hagedorn B. , Sletten R. , Junge K. , Christner B. C. . ( 2014;). Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet. . ISME J 8: 2305–2316. [CrossRef] [PubMed]
    [Google Scholar]
  5. Dunfield P. F. , Khmelenina V. N. , Suzina N. E. , Trotsenko Y. A. , Dedysh S. N. . ( 2003;). Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. . Int J Syst Evol Microbiol 53: 1231–1239. [CrossRef] [PubMed]
    [Google Scholar]
  6. Felsenstein J. . ( 1989;). PHYLIP – phylogeny inference package (version 3.2). . Cladistics 5: 164–166.
    [Google Scholar]
  7. Graham D. W. , Korich D. G. , LeBlanc R. P. , Sinclair N. A. , Arnold R. G. . ( 1992;). Applications of a colorimetric plate assay for soluble methane monooxygenase activity. . Appl Environ Microbiol 58: 2231–2236.[PubMed]
    [Google Scholar]
  8. Hamilton R. , Kits K. D. , Ramonovskaya V. A. , Rozova O. N. , Yurimoto H. , Iguchi H. , Khmelenina V. N. , Sakai Y. , Dunfield P. F. et al. ( 2015;). Draft genomes of gammaproteobacterial methanotrophs isolated from terrestrial ecosystems. . Genome Announc 3: e0051515. [CrossRef] [PubMed]
    [Google Scholar]
  9. He R. , Wooller M. J. , Pohlman J. W. , Catranis C. , Quensen J. , Tiedje J. M. , Leigh M. B. . ( 2012;). Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing. . Environ Microbiol 14: 1403–1419. [CrossRef] [PubMed]
    [Google Scholar]
  10. Holmes A. J. , Costello A. , Lidstrom M. E. , Murrell J. C. . ( 1995;). Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. . FEMS Microbiol Lett 132: 203–208. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hutchens E. , Radajewski S. , Dumont M. G. , McDonald I. R. , Murrell J. C. . ( 2004;). Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. . Environ Microbiol 6: 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  12. Iguchi H. , Yurimoto H. , Sakai Y. . ( 2011;). Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. . Int J Syst Evol Microbiol 61: 810–815. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kip N. , Ouyang W. , van Winden J. , Raghoebarsing A. , van Niftrik L. , Pol A. , Pan Y. , Bodrossy L. , van Donselaar E. G. , other authors . ( 2011;). Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. . Appl Environ Microbiol 77: 5643–5654. [CrossRef] [PubMed]
    [Google Scholar]
  14. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. et al. ( 2004;). ARB: a software environment for sequence data. . Nucleic Acids Res 32: 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  15. McDonald I. R. , Kenna E. M. , Murrell J. C. . ( 2001;). Detection of methanotrophic bacteria in environmental samples with the PCR. . Appl Environ Microbiol 61: 116–121.
    [Google Scholar]
  16. Miguez C. B. , Bourque D. , Sealy J. A. , Greer C. W. , Groleau D. . ( 1997;). Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (sMMO) Genes using the polymerase chain reaction (PCR). . Microb Ecol 33: 21–31.[PubMed] [CrossRef]
    [Google Scholar]
  17. Nichols P. D. , Guckert J. B. , White D. C. . ( 1986;). Determination of monosaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. . J Microbiol Methods 5: 49–55. [CrossRef]
    [Google Scholar]
  18. Oshkin I. Y. , Wegner C. E. , Lüke C. , Glagolev M. V. , Filippov I. V. , Pimenov N. V. , Liesack W. , Dedysh S. N. . ( 2014;). Gammaproteobacterial methanotrophs dominate cold methane seeps in floodplains of West Siberian rivers. . Appl Environ Microbiol 80: 5944–5954. [CrossRef] [PubMed]
    [Google Scholar]
  19. Owen R. J. , Hill L. R. , Lapage S. P. . ( 1969;). Determination of DNA base compositions from melting profiles in dilute buffers. . Biopolymers 7: 503–516. [CrossRef] [PubMed]
    [Google Scholar]
  20. Poly F. , Monrozier L. J. , Bally R. . ( 2001;). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. . Res Microbiol 152: 95–103. [CrossRef] [PubMed]
    [Google Scholar]
  21. Reynolds E. S. . ( 1963;). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. . J Cell Biol 17: 208–213. [CrossRef] [PubMed]
    [Google Scholar]
  22. Damsté J. S. , Rijpstra W. I. , Hopmans E. C. , Weijers J. W. , Foesel B. U. , Overmann J. , Dedysh S. N , Sinninghe Damste J. S. . ( 2011;). 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. . Appl Environ Microbiol 77: 4147–4154. [CrossRef] [PubMed]
    [Google Scholar]
  23. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173: 697–703.[PubMed]
    [Google Scholar]
  24. Whittenbury R. , Phillips K. C. , Wilkinson J. F. . ( 1970;). Enrichment, isolation and some properties of methane-utilizing bacteria. . J Gen Microbiol 61: 205–218. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001046
Loading
/content/journal/ijsem/10.1099/ijsem.0.001046
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error