1887

Abstract

A novel Gram-stain-negative, non-motile, non-spore-forming, non-flagellated, aerobic, beige-coloured and rod-shaped bacterium, designated strain KHS02, was isolated from the intestinal tract of a Japanese flying squid, , which was collected from the East Sea, Korea. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain KHS02 formed a monophyletic clade with HDW-32, with which it had the highest sequence similarity (98.67 %). Strain KHS02 grew optimally at pH 7 with 2 % (w/v) NaCl at 25 °C on marine broth 2216, but could not grow without Na. The predominant isoprenoid quinone was ubiquinone-10 (Q-10). The major fatty acids (>10 % of the total) were summed feature 8 (Cω6 and/or Cω7) and 11-methyl Cω7. The polar lipids of strain KHS02 comprised phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminolipids, an unidentified phospholipid and an unidentified lipid. The genomic DNA G+C content was 58.6 mol%. DNA–DNA hybridization showed that the isolate shared 16.2 ± 1.3 % (reciprocal, 15.7 ± 2.8 %) genomic relatedness with the type strain of the closest species. In conclusion, this isolate is suggested to represent a novel species of the genus , for which the name is proposed. The type strain is KHS02 ( = KACC 18257 = JCM 30419).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000888
2016-03-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1389.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000888&mimeType=html&fmt=ahah

References

  1. Bae J. W., Park Y. H.. 2006; Homogeneous versus heterogeneous probes for microbial ecological microarrays. Trends Biotechnol24:318–323 [CrossRef][PubMed]
    [Google Scholar]
  2. Bae J. W., Rhee S. K., Nam Y. D., Park Y. H.. 2005; Generation of subspecies level-specific microbial diagnostic microarrays using genes amplified from subtractive suppression hybridization as microarray probes. Nucleic Acids Res33:e113 [CrossRef][PubMed]
    [Google Scholar]
  3. Belas R., Mileham A., Cohn D., Hilman M., Simon M., Silverman M.. 1982; Bacterial bioluminescence: isolation and expression of the luciferase genes from Vibrio harveyi . Science218:791–793 [CrossRef][PubMed]
    [Google Scholar]
  4. Chang H. W., Nam Y. D., Jung M. Y., Kim K. H., Roh S. W., Kim M. S., Jeon C. O., Yoon J. H., Bae J. W.. 2008a; Statistical superiority of genome-probing microarrays as genomic DNA-DNA hybridization in revealing the bacterial phylogenetic relationship compared to conventional methods. J Microbiol Methods75:523–530 [CrossRef][PubMed]
    [Google Scholar]
  5. Chang H. W., Sung Y., Kim K. H., Nam Y. D., Roh S. W., Kim M. S., Jeon C. O., Bae J. W.. 2008b; Development of microbial genome-probing microarrays using digital multiple displacement amplification of uncultivated microbial single cells. Environ Sci Technol42:6058–6064 [CrossRef][PubMed]
    [Google Scholar]
  6. Collins M. D., Jones D.. 1981a; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev45:316–354[PubMed]
    [Google Scholar]
  7. Collins M. D., Jones D.. 1981b; A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol51:129–134 [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  9. Gonzalez J. M., Saiz-Jimenez C.. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol4:770–773 [CrossRef][PubMed]
    [Google Scholar]
  10. Hyun D. W., Kim J. Y., Kim M. S., Shin N. R., Kim H. S., Lee J. Y., Bae J. W.. 2015; Actibacter haliotis sp. nov., isolated from the gut of an abalone, Haliotis discus hannai, and emended description of the genus Actibacter . Int J Syst Evol Microbiol65:49–55 [CrossRef][PubMed]
    [Google Scholar]
  11. Jung Y. T., Park S., Lee J. S., Oh T. K., Yoon J. H.. 2012; Pseudahrensia aquimaris gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol62:2056–2061 [CrossRef][PubMed]
    [Google Scholar]
  12. Kaplan H. B., Greenberg E. P.. 1985; Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol163:1210–1214[PubMed]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Kluge A. G., Farris F. S.. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool18:1–32 [CrossRef]
    [Google Scholar]
  15. Lane R. J.. 1991; Vascular surgery for vasculogenic impotence. Med J Aust155:547–548[PubMed]
    [Google Scholar]
  16. MIDI 1999; Sherlock Microbial Identification System Operating Manual, version 3.0 Newark, DE: MIDI, Inc;
    [Google Scholar]
  17. Peix A., Rivas R., Trujillo M. E., Vancanneyt M., Velázquez E., Willems A.. 2005; Reclassification of Agrobacterium ferrugineum LMG 128 as Hoeflea marina gen. nov., sp. nov. Int J Syst Evol Microbiol55:1163–1166 [CrossRef][PubMed]
    [Google Scholar]
  18. Rochelle P. A., Fry J. C., Parkes R. J., Weightman A. J.. 1992; DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol Lett100:59–65 [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  20. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  23. Tindall B. J.. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  24. Tittsler R. P., Sandholzer L. A.. 1936; The use of semi-solid agar for the detection of bacterial motility. J Bacteriol31:575–580[PubMed]
    [Google Scholar]
  25. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  26. Xin H., Itoh T., Zhou P., Suzuki K., Kamekura M., Nakase T.. 2000; Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol50:1297–1303[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000888
Loading
/content/journal/ijsem/10.1099/ijsem.0.000888
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error