1887

Abstract

Two Gram-stain-negative, aerobic, alkaliphilic bacteria (strains MEB087 and MEB142) were isolated from sediment and water samples, respectively, collected from the alkaline Lonar Lake in Maharashtra, India. Strains MEB087 and MEB142 shared 99.8 % 16S rRNA gene sequence similarity and were 85 % related on the basis of DNA–DNA hybridization. The 16S rRNA gene sequences of both strains showed close relationship with the genus , and their closest neighbour was 4CA with 97.7 % sequence similarity. MEB087 and MEB142 exhibited only 45 % and 54 % DNA–DNA relatedness, respectively, with DSM 16316. Both strains were asporogenous, short, non-motile rods capable of utilizing a limited range of organic acids as sole carbon and energy sources. They were oxidase- and catalase-positive, able to reduce nitrate and nitrite; but unable to degrade DNA, urea, gelatin, casein or starch. They grew optimally at pH 9.5 (tolerating up to pH 11) and could withstand up to 0.6 M NaCl. The predominant cellular fatty acids were summed feature 8 comprising Cω7/Cω6 (47–49 %) followed by summed feature 3 comprising Cω7/Cω6 (28–32 %). The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. The DNA G+C content was 49.3–49.7 mol%. On the basis of the phylogenetic analysis and chemotaxonomic characteristics, strains MEB087 and MEB142 represent a novel species in the genus , for which the name sp. nov. is proposed. The type strain is MEB087 ( = KCTC 42948 = JCM 19317) with MEB142 ( = KCTC 42949 = JCM 19318) as an additional strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000868
2016-03-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1254.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000868&mimeType=html&fmt=ahah

References

  1. Ahire K. C., Kapadnis B. P., Kulkarni G. J., Shouche Y. S., Deopurkar R. L.. 2012; Biodegradation of tributyl phosphate by novel bacteria isolated from enrichment cultures. Biodegradation23:165–176 [CrossRef][PubMed]
    [Google Scholar]
  2. Bligh E. G., Dyer W. J.. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  3. Borsodi A. K., Pollák B., Kéki Z., Rusznyák A., Kovács A. L., Spröer C., Schumann P., Márialigeti K., Tóth E. M.. 2011; Bacillus alkalisediminis sp. nov., an alkaliphilic and moderately halophilic bacterium isolated from sediment of extremely shallow soda ponds. Int J Syst Evol Microbiol61:1880–1886 [CrossRef][PubMed]
    [Google Scholar]
  4. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A75:4801–4805 [CrossRef][PubMed]
    [Google Scholar]
  5. Card G. L.. 1973; Metabolism of phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin of Bacillus stearothermophilus. J Bacteriol114:1125–1137[PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  7. Dimitriu P. A., Shukla S. K., Conradt J., Márquez M. C., Ventosa A., Maglia A., Peyton B. M., Pinkart H. C., Mormile M. R.. 2005; Nitrincola lacisaponensis gen. nov., sp. nov., a novel alkaliphilic bacterium isolated from an alkaline, saline lake. Int J Syst Evol Microbiol55:2273–2278 [CrossRef][PubMed]
    [Google Scholar]
  8. Garrity G. M., Bell J. A., Lilburn T.. 2005; Family I. Oceanospirillaceae fam. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn.vol. 2 part B (The Gammaproteobacteria) p271Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York: Springer;
    [Google Scholar]
  9. Gillis M., De Ley J., De Cleene M.. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem12:143–153 [CrossRef][PubMed]
    [Google Scholar]
  10. Gonzalez J. M., Saiz-Jimenez C.. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol4:770–773 [CrossRef][PubMed]
    [Google Scholar]
  11. Gonzalez J. M., Saiz-Jimenez C.. 2005; A simple fluorimetric method for the estimation of DNA-DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles9:75–79 [CrossRef][PubMed]
    [Google Scholar]
  12. Horikoshi K.. 1998; Alkaliphiles. In Extremophiles: Microbial Life in Extreme Environments pp155–179Edited by Horikoshi K., Grant W. D.. New York: Wiley;
    [Google Scholar]
  13. Huss V. A. R., Festl H., Schleifer K. H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  14. Ivey D. M., Ito M., Gilmour R., Zemsky J., Guffanti A. A., Sturr M. G., Hicks D. B., Krulwich T. A.. 1998; Alkaliphile bioenergetics. In Extremophiles: Microbial Life in Extreme Environments pp181–210Edited by Horikoshi K., Grant W. D.. New York: Wiley;
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  16. King E. O., Ward M. K., Raney D. E.. 1954; Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med44:301–307[PubMed]
    [Google Scholar]
  17. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R.. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A82:6955–6959 [CrossRef][PubMed]
    [Google Scholar]
  18. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., other authors. 2007; Clustal W and Clustal X version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  19. Loveland-Curtze J., Miteva V. I., Brenchley J. E.. 2011; Evaluation of a new fluorimetric DNA-DNA hybridization method. Can J Microbiol57:250–255 [CrossRef][PubMed]
    [Google Scholar]
  20. Marmur J.. 1961; A procedure for isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol3:208–218 [CrossRef]
    [Google Scholar]
  21. Sasser M.. 1990; Identification of bacteria through fatty acid analysis. In Methods in Phytobacteriology pp199–204Edited by Klement Z., Rudolph K., Sands D. C.. Budapest: Akademiai Kiado;
    [Google Scholar]
  22. Smibert R. M., Krieg N. R.. 1994; Phenotypic characteristics. In Methods for General and Molecular Biology pp607–654Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  24. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S.. 2001; Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol51:1639–1652 [CrossRef][PubMed]
    [Google Scholar]
  25. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  26. Tindall B. J.. 1990; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol13:128–130 [CrossRef]
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000868
Loading
/content/journal/ijsem/10.1099/ijsem.0.000868
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error