1887

Abstract

An obligately anaerobic spirochaete designated strain JC227 was isolated from the gut of a wood-eating cockroach, (Scudder), from the Rann of Kutch, Gujarat, India. Strain JC227 was Gram-stain-negative, mesophilic, halotolerant and alkaliphilic. Based on 16S rRNA gene sequence analysis, strain JC227 belongs to the genus , with JC133 (99.51 %), JC202 (99.30 %), Z-7491 (99.10 %), (98.54 %) and other members of the genus ( < 92.7 %) as its closest phylogenetic neighbours. However, DNA–DNA hybridization between strain JC227 and JC133, JC202, DSM 8900 and DSM 14872 was 62 ± 2, 63, 58 ± 2 and 48 ± 4 %, respectively. Strain JC227 contained phosphatidylglycerol, diphosphatidylglycerol, an unidentified glycolipid and six unidentified lipids. Summed feature Cω7/Cω6 was the predominant cellular fatty acid, with significant proportions of C, C, C, Cω6, Cω5, Cω6/Cω7 and C 2-OH. The DNA G+C content of strain JC227 was 55.5 mol%. On the basis of physiological, biochemical, chemotaxonomic (including metabolomic) and genomic differences from previously described taxa, strain JC227 can be differentiated from members of the genus and represents a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is JC227 ( = KCTC 15343 = NBRC 110105). We also propose the reclassification of , , and as comb. nov. (type strain JC133 = KCTC 15220 = NBRC 109056), comb. nov. (type strain JC202 = KCTC 15324 = NBRC 110104), comb. nov. (type strain Z-7491 = DSM 8900 = ATCC 700262) and comb. nov. (type strain ASpG1 = ATCC BAA-392 = DSM 14872). The type species of gen. nov. is comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000865
2016-04-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1612.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000865&mimeType=html&fmt=ahah

References

  1. Abt B., Göker M., Scheuner C., Han C., Lu M., Misra M., Lapidus A., Nolan M., Lucas S., other authors. 2013; Genome sequence of the thermophilic fresh-water bacterium Spirochaeta caldaria type strain (H1T), reclassification of Spirochaeta caldaria, Spirochaeta stenostrepta, and Spirochaeta zuelzerae in the genus Treponema as Treponema caldaria comb. nov., Treponema stenostrepta comb. nov., and Treponema zuelzerae comb. nov., and emendation of the genus Treponema . Stand Genomic Sci8:88–105 [CrossRef][PubMed]
    [Google Scholar]
  2. Aksenova H. Y., Rainey F. A., Janssen P. H., Zavarzin G. A., Morgan H. W.. 1992; Spirochaeta thermophila sp. nov., an obligately anaerobic, polysaccharolytic, extremely thermophilic bacterium. Int J Syst Bacteriol42:175–177 [CrossRef]
    [Google Scholar]
  3. Ben Hania W., Joseph M., Schumann P., Bunk B., Fiebig A., Spröer C., Klenk H. P., Fardeau M. L., Spring S.. 2015; Complete genome sequence and description of Salinispira pacifica gen. nov., sp. nov., a novel spirochaete isolated form a hypersaline microbial mat. Stand Genomic Sci10:7 [CrossRef][PubMed]
    [Google Scholar]
  4. Berlanga M., Paster B. J., Guerrero R.. 2007; Coevolution of symbiotic spirochete diversity in lower termites. Int Microbiol10:133–139[PubMed]
    [Google Scholar]
  5. Bermudes D., Chase D., Margulis L.. 1988; Morphology as a basis for taxonomy of large spirochetes symbiotic in wood-eating cockroaches and termites: Pillotina gen. nov., nom. rev., Pillotina calotermitidis sp. nov., nom. rev., Diplocalyx gen. nov., nom. rev., Diplocalyx calotermitidis sp. nov., nom. rev., Hollandina gen. nov., nom. rev., Hollandina pterotermitidis sp. nov., nom. rev., and Clevelandina reticulitermitidis gen. nov., sp. nov.. Int J Syst Bacteriol38:291–302 [CrossRef][PubMed]
    [Google Scholar]
  6. Bloodgood R. A., Fitzharris T. P.. 1976; Specific associations of prokaryotes with symbiotic flagellate protozoa from the hindgut of the termite Reticulitermes and the wood-eating roach Cryptocercus . Cytobios17:103–122[PubMed]
    [Google Scholar]
  7. Breznak J. A., Canale-Parola E.. 1975; Morphology and physiology of Spirochaeta aurantia strains isolated from aquatic habitats. Arch Microbiol105:1–12 [CrossRef][PubMed]
    [Google Scholar]
  8. Breznak J. A., Pankratz H. S.. 1977; In situ morphology of the gut microbiota of wood-eating termites [Reticulitermes flavipes (Kollar) and Coptotermes formosanus Shiraki]. Appl Environ Microbiol33:406–426[PubMed]
    [Google Scholar]
  9. Breznak J. A., Warnecke F.. 2008; Spirochaeta cellobiosiphila sp. nov., a facultatively anaerobic, marine spirochaete. Int J Syst Evol Microbiol58:2762–2768 [CrossRef][PubMed]
    [Google Scholar]
  10. Dubinina G., Grabovich M., Leshcheva N., Rainey F. A., Gavrish E.. 2011; Spirochaeta perfilievii sp. nov., an oxygen-tolerant, sulfide-oxidizing, sulfur- and thiosulfate-reducing spirochaete isolated from a saline spring. Int J Syst Evol Microbiol61:110–117 [CrossRef][PubMed]
    [Google Scholar]
  11. Fracek S. P. Jr, Stolz J. F.. 1985; Spirochaeta bajacaliforniensis sp. n. from a microbial mat community at Laguna Figueroa, Baja California Norte, Mexico. Arch Microbiol142:317–325 [CrossRef][PubMed]
    [Google Scholar]
  12. Graber J. R., Leadbetter J. R., Breznak J. A.. 2004; Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol70:1315–1320 [CrossRef][PubMed]
    [Google Scholar]
  13. Greenberg E. P., Canale-Parola E.. 1976; Spirochaeta halophila sp. n., a facultative anaerobe from a high-salinity pond. Arch Microbiol110:185–194 [CrossRef][PubMed]
    [Google Scholar]
  14. Hoover R. B., Pikuta E. V., Bej A. K., Marsic D., Whitman W. B., Tang J., Krader P.. 2003; Spirochaeta americana sp. nov., a new haloalkaliphilic, obligately anaerobic spirochaete isolated from soda Mono Lake in California. Int J Syst Evol Microbiol53:815–821 [CrossRef][PubMed]
    [Google Scholar]
  15. Kates M.. 1972; Techniques of Lipidology New York: Elsevier; [CrossRef]
    [Google Scholar]
  16. Kates M.. 1986; Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids Amsterdam: Elsevier;
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  19. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J.. 1951; Protein measurement with the Folin phenol reagent. J Biol Chem193:265–275[PubMed]
    [Google Scholar]
  20. Magot M., Fardeau M. L., Arnauld O., Lanau C., Ollivier B., Thomas P., Patel B. K.. 1997; Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Microbiol Lett155:185–191 [CrossRef][PubMed]
    [Google Scholar]
  21. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol3:208–218 [CrossRef]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  23. Miyazaki M., Sakai S., Yamanaka Y., Saito Y., Takai K., Imachi H.. 2014; Spirochaeta psychrophila sp. nov., a psychrophilic spirochaete isolated from subseafloor sediment, and emended description of the genus Spirochaeta . Int J Syst Evol Microbiol64:2798–2804 [CrossRef][PubMed]
    [Google Scholar]
  24. Ohkuma M., Iida T., Kudo T.. 1999; Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites. FEMS Microbiol Lett181:123–129 [CrossRef][PubMed]
    [Google Scholar]
  25. Oren A., Duker S., Ritter S.. 1996; The polar lipid composition of Walsby's square bacterium. FEMS Microbiol Lett138:135–140 [CrossRef]
    [Google Scholar]
  26. Paster B. J.. 2010; Phylum XV. Spirochaetes Garrity and Holt 2001. In Bergey's Manual of Systematic Bacteriology 2nd edn, vol. 4, pp. 471–566. Edited by Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B.. New York: Springer; [CrossRef]
    [Google Scholar]
  27. Paster B. J., Dewhirst F. E.. 2000; Phylogenetic foundation of spirochetes. J Mol Microbiol Biotechnol2:341–344[PubMed]
    [Google Scholar]
  28. Pikuta E. V., Hoover R. B., Bej A. K., Marsic D., Whitman W. B., Krader P.. 2009; Spirochaeta dissipatitropha sp. nov., an alkaliphilic, obligately anaerobic bacterium, and emended description of the genus Spirochaeta Ehrenberg 1835. Int J Syst Evol Microbiol59:1798–1804 [CrossRef][PubMed]
    [Google Scholar]
  29. Reddy S. V., Aspana S., Tushar D. L., Sasikala Ch., Ramana Ch. V.. 2013; Spirochaeta sphaeroplastigenens sp. nov., a halo-alkaliphilic, obligately anaerobic spirochaete isolated from soda lake Lonar. Int J Syst Evol Microbiol63:2223–2228 [CrossRef][PubMed]
    [Google Scholar]
  30. Ritalahti K. M., Justicia-Leon S. D., Cusick K. D., Ramos-Hernandez N., Rubin M., Dornbush J., Löffler F. E.. 2012; Sphaerochaeta globosa gen. nov., sp. nov. and Sphaerochaeta pleomorpha sp. nov., free-living, spherical spirochaetes. Int J Syst Evol Microbiol62:210–216 [CrossRef][PubMed]
    [Google Scholar]
  31. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note no. 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  32. Shivani Y., Subhash Y., Tushar L., Sasikala Ch., Ramana Ch. V.. 2015; Spirochaeta lutea sp. nov., isolated from marine habitats and emended description of the genus Spirochaeta. Syst Appl Microbiol38:110–114 [CrossRef][PubMed]
    [Google Scholar]
  33. Sravanthi T., Tushar L., Sasikala Ch., Ramana Ch. V.. 2015; Spirochaeta odontotermitis sp. nov., a novel obligately anaerobic, cellulolytic, halotolerant, alkaliphilic spirochaete isolated from the termite, Odontotermes obesus (Rambur) gut. Int J Syst Evol Microbiol65:4589–4594[CrossRef]
    [Google Scholar]
  34. Stackebrandt E., Ebers J.. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today3:152–155 [CrossRef]
    [Google Scholar]
  35. Stackebrandt E., Goebel B. M.. 1994; A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  36. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  37. Tindall B. J.. 1990a; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  38. Tindall B. J.. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol13:128–130 [CrossRef]
    [Google Scholar]
  39. Tourova T. P., Antonov A. S.. 1987; Identification of microorganisms by rapid DNA-DNA hybridization. Methods Microbiol19:333–355 [CrossRef]
    [Google Scholar]
  40. Troshina O., Oshurkova V., Suzina N., Machulin A., Ariskina E., Vinokurova N., Kopitsyn D., Novikov A., Shcherbakova V.. 2015; Sphaerochaeta associata sp. nov., a spherical spirochaete isolated from cultures of Methanosarcina mazei JL01. Int J Syst Evol Microbiol65:4315–4322[CrossRef]
    [Google Scholar]
  41. Venkata Ramana V., Chakravarthy S. K., Raj P. S., Kumar B. V., Shobha E., Ramaprasad E. V., Sasikala Ch., Ramana Ch. V.. 2012; Descriptions of Rhodopseudomonas parapalustris sp. nov., Rhodopseudomonas harwoodiae sp. nov. and Rhodopseudomonas pseudopalustris sp. nov., and emended description of Rhodopseudomonas palustris . Int J Syst Evol Microbiol62:1790–1798 [CrossRef][PubMed]
    [Google Scholar]
  42. Wolin E. A., Wolin M. J., Wolfe R. S.. 1963; Formation of methane by bacterial extracts. J Biol Chem238:2882–2886[PubMed]
    [Google Scholar]
  43. Yarza P., Yilmaz P., Pruesse E., Glöckner F. O., Ludwig W., Schleifer K. H., Whitman W. B., Euzéby J., Amann R., Rosselló-Móra R.. 2014; Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  44. Zhilina T. N., Zavarzin G. A., Rainey F., Kevbrin V. V., Kostrikina N. A., Lysenko A. M.. 1996; Spirochaeta alkalica sp. nov., Spirochaeta africana sp. nov., and Spirochaeta asiatica sp. nov., alkaliphilic anaerobes from the continental soda lakes in Central Asia and the East African Rift. Int J Syst Bacteriol46:305–312 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000865
Loading
/content/journal/ijsem/10.1099/ijsem.0.000865
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error