1887

Abstract

A novel marine bacterial strain, designated JAMH 043, was isolated from cold-seep sediment in Sagami Bay, Japan. Cells were Gram-stain-negative, rod-shaped, non-motile and aerobic chemo-organotrophs. The isolate grew optimally at 25 °C, at pH 7.0–7.5 and with 3 % (w/v) NaCl. The major respiratory quinone was ubiquinone-10 (Q-10). The predominant fatty acid was Cω7. On the basis of 16S rRNA gene sequence analysis, the isolated strain was closely affiliated to members of the genus in the class , and 16S rRNA gene sequence similarity of the novel isolate with the type strain of its closest related species, JC2049, was 98.4 %. The DNA G+C content of the novel strain was 58.0 mol%. The hybridization values for DNA–DNA relatedness between strain JAMH 043 and reference strains belonging to the genus were less than 14.1 ± 2.2 %. Based on differences in taxonomic characteristics, the isolated strain represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JAMH 043 ( = JCM 30900 = DSM 100673).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000758
2016-02-01
2020-09-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/574.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000758&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  2. Arahal D. R., Macián M. C., Garay E., Pujalte M. J.. 2005; Thalassobius mediterraneus gen. nov., sp. nov., and reclassification of Ruegeria gelatinovorans as Thalassobius gelatinovorus comb. nov. Int J Syst Evol Microbiol55:2371–2376 [CrossRef][PubMed]
    [Google Scholar]
  3. Barrow G. I., Feltham R. K. A.(editors). 1993; Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn.. New York: Cambridge University Press; [CrossRef]
    [Google Scholar]
  4. Baumann L., Baumann P., Mandel M., Allen R. D.. 1972; Taxonomy of aerobic marine eubacteria. J Bacteriol110:402–429[PubMed]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  7. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  8. Hugh R., Leifson E.. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol66:24–26[PubMed]
    [Google Scholar]
  9. Jukes T. H., Cantor C. R.. 1969; Evolution of protein molecules. In Mammalian Protein Metabolismvol. 3 pp21–132Edited by Munro H. N.. New York: Academic Press; [CrossRef]
    [Google Scholar]
  10. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  11. Komagata K., Suzuki K.. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–207 [CrossRef]
    [Google Scholar]
  12. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp115–148Edited by Stackebrandt E., Goodfellow M.. New York: John Wiley and Sons;
    [Google Scholar]
  13. MIDI 1999; Sherlock, Microbial Identification System, Operating Manual, version 3.0 Newark, DE: MIDI, Inc;
    [Google Scholar]
  14. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  15. Nogi Y., Yoshizumi M., Miyazaki M.. 2014; Thalassospira povalilytica sp. nov., a polyvinyl-alcohol-degrading marine bacterium. Int J Syst Evol Microbiol64:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  16. Park S., Lee M. H., Lee J. S., Oh T. K., Yoon J. H.. 2012; Thalassobius maritimus sp. nov., isolated from seawater. Int J Syst Evol Microbiol62:8–12 [CrossRef][PubMed]
    [Google Scholar]
  17. Park S., Jung Y.-T., Won S.-M., Park J.-M., Yoon J. H.. 2014; Thalassobius aquaeponti sp. nov., an alphaproteobacterium isolated from seawater. Antonie van Leeuwenhoek106:535–542 [CrossRef][PubMed]
    [Google Scholar]
  18. Rüger H. J., Höfle M. G.. 1992; Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov., Agrobacterium meteori sp. nov., Agrobacterium ferrugineum sp. nov., nom. rev., Agrobacterium gelatinovorum sp. nov., nom. rev., and Agrobacterium stellulatum sp. nov., nom. rev.. Int J Syst Bacteriol42:133–143 [CrossRef][PubMed]
    [Google Scholar]
  19. Saito H., Miura K. I.. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta72:619–629 [CrossRef][PubMed]
    [Google Scholar]
  20. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  21. Stackebrandt E., Ebers J.. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today33:152–155
    [Google Scholar]
  22. Tamaoka J., Komagata K.. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett25:125–128 [CrossRef]
    [Google Scholar]
  23. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  25. Uchida H., Hamana K., Miyazaki M., Yoshida T., Nogi Y.. 2012; Parasphingopyxis lamellibrachiae gen. nov., sp. nov., isolated from a marine annelid worm. Int J Syst Evol Microbiol62:2224–2228 [CrossRef][PubMed]
    [Google Scholar]
  26. Yi H., Chun J.. 2006; Thalassobius aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol44:171–176[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000758
Loading
/content/journal/ijsem/10.1099/ijsem.0.000758
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error