1887

Abstract

Three moderately acidophilic, halophilic archaeal strains, MH1-243-3, MH1-243-5 and MH1-243-6, were isolated from a commercial salt sample made from seawater in Okinawa, Japan. Cells of the three strains were pleomorphic and stained Gram-negative. Colonies of the strains were orange–red-pigmented. Strain MH1-243-3 was able to grow at 15–27 % (w/v) NaCl (optimum 24 °C), at pH 4.5–6.5 (pH 5.5) and at 35–50 °C (45 °C). Strains MH1-243-5 and MH1-243-6 grew within slightly different ranges (shown in text). The 16S rRNA gene sequences of the three strains were identical, and the closest phylogenetic relative was MH1-34-1 with 97.0 % similarity. The ′ gene sequences of the three strains were also identical, and the closest phylogenetic relative was JCM 16109 with 92.0 % similarity. The DNA G+C content of MH1-243-3, MH1-243-5 and MH1-243-6 was 65.2 mol%. The levels of DNA–DNA relatedness amongst the three strains were 84.1–99.8 %, while that between MH1-243-3 and MH1-34-1 was 30.6 % and 31.6 % (reciprocally), and those between MH1-243-3 and type strains of other species in the genus were 42.3–29.4 %. Based on the phenotypic, genotypic and phylogenetic analyses, it is proposed that the isolates should represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MH1-243-3 ( = JCM 19585 = KCTC 4142), isolated from commercial sea salt produced in Okinawa, Japan. MH1-243-5 ( = JCM 19586) and MH1-243-6 ( = JCM 18422) are additional strains of the species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000501
2015-11-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/3830.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000501&mimeType=html&fmt=ahah

References

  1. Cline S. W., Schalkwyk L. C., Doolittle W. F.. ( 1989;). Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. J Bacteriol 171: 4987–4991,[PubMed].
    [Google Scholar]
  2. Dussault H. P.. ( 1955;). An improved technique for staining red halophilic bacteria. J Bacteriol 70: 484–485,[PubMed].
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  5. Felsenstein J.. ( 2002;). phylip (phylogeney inference package), version 3.6a Distributed by the author Seattle, USA: Department of Genome Sciences, University of Washington;.
    [Google Scholar]
  6. Gonzalez C., Gutierrez C., Ramirez C.. ( 1978;). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24: 710–715 [CrossRef] [PubMed].
    [Google Scholar]
  7. Grant W. D., Kamekura M., McGenity T. J., Ventosa A.. ( 2001;). Order I. Halobacteriales Grant and Larsen, 1989b, 495VP (effective publication: Grant and Larsen, 1989a, 2216). . In Bergey's Manual of Systematic Bacteriology, pp. 294–299. Edited by Boone D. R., Castenholz R. W., Garrity G. M..1, 2nd edn.., New York: Springer;.
    [Google Scholar]
  8. Gupta R. S., Naushad S., Baker S.. ( 2015;). Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 65: 1050–1069 [CrossRef] [PubMed].
    [Google Scholar]
  9. Henriet O., Fourmentin J., Delincé B., Mahillon J.. ( 2014;). Exploring the diversity of extremely halophilic archaea in food-grade salts. Int J Food Microbiol 191: 36–44 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kamekura M.. ( 1993;). Lipids of extreme halophiles. . In The Biology of Halophilic Bacteria, pp. 135–161. Edited by Vreeland R. H., Hochstein L. I.. Boca Raton, FL: CRC Press;.
    [Google Scholar]
  11. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., other authors. ( 2007;). Clustal W and Clustal_X version 2.0. Bioinformatics 23: 2947–2948 [CrossRef] [PubMed].
    [Google Scholar]
  12. Minegishi H., Mizuki T., Echigo A., Fukushima T., Kamekura M., Usami R.. ( 2008;). Acidophilic haloarchaeal strains are isolated from various solar salts. Saline Syst 4: 16 [CrossRef] [PubMed].
    [Google Scholar]
  13. Minegishi H., Echigo A., Nagaoka S., Kamekura M., Usami R.. ( 2010a;). Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. Int J Syst Evol Microbiol 60: 2513–2516 [CrossRef] [PubMed].
    [Google Scholar]
  14. Minegishi H., Kamekura M., Itoh T., Echigo A., Usami R., Hashimoto T.. ( 2010b;). Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B′(rpoB′) gene. Int J Syst Evol Microbiol 60: 2398–2408 [CrossRef] [PubMed].
    [Google Scholar]
  15. Minegishi H., Kamekura M., Kitajima-Ihara T., Nakasone K., Echigo A., Shimane Y., Usami R., Itoh T., Ihara K.. ( 2012;). Gene orders in the upstream of 16S rRNA genes divide genera of the family Halobacteriaceae into two groups. Int J Syst Evol Microbiol 62: 188–195 [CrossRef] [PubMed].
    [Google Scholar]
  16. Minegishi H., Yamauchi Y., Echigo A., Shimane Y., Kamekura M., Itoh T., Ohkuma M., Usami R.. ( 2013;). Halarchaeum nitratireducens sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt. Int J Syst Evol Microbiol 63: 4202–4206 [CrossRef] [PubMed].
    [Google Scholar]
  17. Oren A., Ventosa A., Grant W. D.. ( 1997;). Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47: 233–238 [CrossRef].
    [Google Scholar]
  18. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425,[PubMed].
    [Google Scholar]
  19. Saralov A. I., Baslerov R. V., Reutskikh E. M., Kuznetsov B. B.. ( 2012;). Halarchaeum solikamskense sp. nov., a thermotolerant neutrophilic haloarchaeon from the foamy products of flotation enrichment of potassium minerals. Microbiology (English translation of Mikrobiologiya) 81: 589–595 [CrossRef].
    [Google Scholar]
  20. Saralov A. I., Baslerov R. V., Reutskikh E. M., Kuznetsov B. B.. ( 2014;). Halarchaeum solikamskense sp. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, Validation List no. 155. Int J Syst Evol Microbiol 64: 1–5 [CrossRef] [PubMed].
    [Google Scholar]
  21. Silvestro D., Michalak I.. ( 2012;). raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 12: 335–337 [CrossRef].
    [Google Scholar]
  22. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  23. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846–849 [CrossRef].
    [Google Scholar]
  24. Stamatakis A., Ludwig T., Meier H.. ( 2005;). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21: 456–463 [CrossRef] [PubMed].
    [Google Scholar]
  25. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  26. Vincent J. G., Vincent H. W.. ( 1944;). Filter paper disc modification of the Oxford cup penicillin determination. Proc Soc Exp Biol Med 55: 162–164 [CrossRef].
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  28. Yamauchi Y., Minegishi H., Echigo A., Shimane Y., Shimoshige H., Kamekura M., Itoh T., Doukyu N., Inoue A., Usami R.. ( 2013a;). Halarchaeum salinum sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt. Int J Syst Evol Microbiol 63: 1138–1142 [CrossRef] [PubMed].
    [Google Scholar]
  29. Yamauchi Y., Minegishi H., Echigo A., Shimane Y., Kamekura M., Itoh T., Ohkuma M., Doukyu N., Inoue A., Usami R.. ( 2013b;). Halarchaeum rubridurum sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt samples. Int J Syst Evol Microbiol 63: 3143–3147 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000501
Loading
/content/journal/ijsem/10.1099/ijsem.0.000501
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error