1887

Abstract

Two groups of haloalkaliphilic methanogenic archaea were dominating in enrichments from hypersaline soda lake sediments at pH 10. At moderate salt concentrations with formate or H as electron donor, methanogens belonging to the genus were enriched, while at high salt concentrations with methylated substrates, a group related to was dominating. For both groups, several pure cultures were obtained including the type strains AMF2 for the group and AME2 for the group. The group is characterized by lithoheterotrophic growth with either formate (preferable substrate) or H at moderate salinity up to 1.5–2 M total Na and obligate alkaliphilic growth with an optimum at pH 9.5. According to phylogenetic analysis, the group also includes closely related strains isolated previously from the low-salt alkaline Lonar Lake. The novel group is characterized by high salt tolerance (up to 3.5 M total Na) and obligate alkaliphilic growth with an optimum at pH 9.5. It has a typical methylotrophic substrate profile, utilizing methanol, methylamines and dimethyl sulfide (at low concentrations) as methanogenic substrates. On the basis of physiological and phylogenetic data, it is proposed that the two groups of soda lake methanogenic isolates are assigned into two novel species, sp. nov. (type strain AMF2 = DSM 24457 = UNIQEM U859) and sp. nov. (type strain AME2 = DSM 24634 = NBRC 110091).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000488
2015-10-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3739.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000488&mimeType=html&fmt=ahah

References

  1. Antony C.P., Murrell J.C., Shouche Y.S.. ( 2012;). Molecular diversity of methanogens and identification of Methanolobus sp. as active methylotrophic Archaea in Lonar crater lake sediments. FEMS Microbiol Ecol 81: 43–51 [CrossRef] [PubMed].
    [Google Scholar]
  2. Boone D.R., Baker C.C.. ( 2001;). Genus VI. Methanosalsum gen. nov.. In Bergey's Manual of Systematic Bacteriology, vol. 1, 2nd edn.., pp. 287–289. Edited by Boone D. R., Castenholz R. W., Garrity G. M.. New York: [CrossRef] Springer;.
    [Google Scholar]
  3. Boone D.R., Worakit S., Mathrani I.M., Mah R.A.. ( 1986;). Alkaliphilic methanogens from high-pH lake sediments. Syst Appl Microbiol 7: 230–234 [CrossRef].
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  5. Hedderich R., Whitman W.B.. ( 2013;). Physiology and biochemistry of the methane-producing Archaea. . In The Prokaryotes, 4th edn.., pp. 635–662. Edited by Rosenberg E., DeLong F., Lory S., Stackebrandt E., Thompson F.. Berlin: [CrossRef] Springer;.
    [Google Scholar]
  6. Kevbrin V.V., Lysenko A.M., Zhilina T.N.. ( 1997;). Physiology of alkaliphilic methanogen Z-7936, a new strain of Methanosalsus zhilinae isolated from Lake Magadi. Microbiology (English translation of Mikrobiologiia) 66: 261–266.
    [Google Scholar]
  7. Koga Y., Morii H., Akagawa-Matsushita M., Ohga M.. ( 1998;). Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts. Biosci Biotechnol Biochem 62: 230–236 [CrossRef].
    [Google Scholar]
  8. Marmur J.. ( 1961;). A procedure for isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  9. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from microorganisms from its thermal denaturation temperature. J Mol Biol 5: 109–118 [CrossRef] [PubMed].
    [Google Scholar]
  10. Mathrani I.M., Boone D.R., Mah R.A., Fox G.E., Lau P.P.. ( 1988;). Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Bacteriol 38: 139–142 [CrossRef] [PubMed].
    [Google Scholar]
  11. McGenity T.J.. ( 2010;). Methanogens and methanogenesis in hypersaline environments. . In Handbook of Hydrocarbon and Lipid Microbiology, pp. 665–680. Edited by Timmis K. N.. Berlin: [CrossRef] Springer;.
    [Google Scholar]
  12. Nolla-Ardèvol V., Strous M., Sorokin D.Y., Merkel A.Y., Tegetmeyer H.E.. ( 2012;). Activity and diversity of haloalkaliphilic methanogens in Central Asian soda lakes. J Biotechnol 161: 167–173 [CrossRef] [PubMed].
    [Google Scholar]
  13. Ollivier B., Fardeau M.L., Cayol J.L., Magot M., Patel B.K.C., Prensier G., Garcia J.L.. ( 1998;). Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Bacteriol 48: 821–828 [CrossRef] [PubMed].
    [Google Scholar]
  14. Oremland R.S., King G.M.. ( 1989;). Methanogenesis in hypersaline environments. . In Microbial Mats. Physiological Ecology of Benthic Microbial Communities, pp. 180–190. Edited by Cohen Y., Rosenberg E.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  15. Sinninghe Damsté J.S., Rijpstra W.I.C., Hopmans E.C., Weijers J.W.H., Foesel B.U., Overmann J., Dedysh S.N.. ( 2011;). 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Appl Environ Microbiol 77: 4147–4154 [CrossRef] [PubMed].
    [Google Scholar]
  16. Sorokin D.Y., Rusanov I.I., Pimenov N.V., Tourova T.P., Abbas B., Muyzer G.. ( 2010;). Sulfidogenesis under extremely haloalkaline conditions in soda lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiol Ecol 73: 278–290 [PubMed].
    [Google Scholar]
  17. Sorokin D.Y., Abbas B., Geleijnse M., Pimenov N.V., Sukhacheva M.V., van Loosdrecht M.C.M.. ( 2015;). Methanogenesis at extremely haloalkaline conditions in the soda lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiol Ecol 91: fiv016 [CrossRef] [PubMed].
    [Google Scholar]
  18. Surakasi V.P., Wani A.A., Shouche Y.S., Ranade D.R.. ( 2007;). Phylogenetic analysis of methanogenic enrichment cultures obtained from Lonar Lake in India: isolation of Methanocalculus sp. and Methanoculleus sp. Microb Ecol 54: 697–704 [CrossRef] [PubMed].
    [Google Scholar]
  19. Weijers J.W.H., Panoto E., van Bleijswijk J., Schouten S., Rijpstra W.I.C., Balk M., Stams A.J.M., Sinninghe Damsté J.S.. ( 2009;). Constraints on the biological source(s) of the orphan branched tetraether membrane lipids. Geomicrobiol J 26: 402–414 [CrossRef].
    [Google Scholar]
  20. Worakit S., Boone D.R., Mah R.A., Abdel-Samie M.-E., El-Halwagi M.M.. ( 1986;). Methanobacterium alcaliphilum sp. nov., an H2-utilizing methanogen that grows at high pH values. Int J Syst Bacteriol 36: 380–382 [CrossRef].
    [Google Scholar]
  21. Zhilina T.N., Zavarzina D.G., Kevbrin V.V., Kolganova T.V.. ( 2013;). Methanocalculus natronophilus sp. nov., a new alkaliphilic hydogenotrophic methanogenic archaeon from soda lake and proposal of the new family Methanocalculaceae. Microbiology (English translation of Mikrobiologiia) 82: 698–706 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000488
Loading
/content/journal/ijsem/10.1099/ijsem.0.000488
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error