- Volume 65, Issue Pt_10, 2015
Volume 65, Issue Pt_10, 2015
- Notification List
-
-
-
Notification that new names of prokaryotes, new combinations and new taxonomic opinions have appeared in volume 65, part 7, of the IJSEM
More LessThis listing of names of prokaryotes published in a previous issue of the IJSEM is provided as a service to bacteriology to assist in the recognition of new names and new combinations. This procedure was proposed by the Judicial Commission [Minute 11(ii), Int J Syst Bacteriol 41 (1991), p. 185]. The names given herein are listed according to the Rules of priority (i.e. page number and order of valid publication of names in the original articles).
-
-
- NEW TAXA
-
- Archaea
-
-
Halorussus amylolyticus sp. nov., isolated from an inland salt lake
More LessA halophilic archaeal strain, YC93T, was isolated from Yuncheng salt lake in Shanxi Province, China. Cells were pleomorphic rods, stained Gram-negative and formed light-red-pigmented colonies on agar plates. Strain YC93T was able to grow at 25–50 °C (optimum 37 °C), with 1.4–4.8 M NaCl (optimum 2.0 M), with 0–1.0 M MgCl2 (optimum 0.05 M) and at pH 6.0–9.5 (optimum pH 7.0). Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 8 % (w/v). 16S rRNA gene sequence analysis revealed that strain YC93T had two dissimilar 16S rRNA genes both of which were phylogenetically related to those of the two recognized members of the genus Halorussus (93.0–95.3 % similarity). The rpoB′ gene of strain YC93T was phylogenetically related to the corresponding gene of Halorussus rarus TBN4T (91.3 % similarity) and Halorussus ruber YC25T (90.5 %). The major polar lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and five glycolipids chromatographically identical to those of Halorussus rarus CGMCC 1.10122T. The DNA G+C content of strain YC93T was 64.6 mol%. The phenotypic, chemotaxonomic and phylogenetic properties suggested that strain YC93T represents a novel species of the genus Halorussus, for which the name Halorussus amylolyticus sp. nov. is proposed. The type strain is YC93T ( = CGMCC 1.12126T = JCM 18367T).
-
-
-
Methanosalsum natronophilum sp. nov., and Methanocalculus alkaliphilus sp. nov., haloalkaliphilic methanogens from hypersaline soda lakes
Two groups of haloalkaliphilic methanogenic archaea were dominating in enrichments from hypersaline soda lake sediments at pH 10. At moderate salt concentrations with formate or H2 as electron donor, methanogens belonging to the genus Methanocalculus were enriched, while at high salt concentrations with methylated substrates, a group related to Methanosalsum zhilinae was dominating. For both groups, several pure cultures were obtained including the type strains AMF2T for the Methanocalculus group and AME2T for the Methanosalsum group. The Methanocalculus group is characterized by lithoheterotrophic growth with either formate (preferable substrate) or H2 at moderate salinity up to 1.5–2 M total Na+ and obligate alkaliphilic growth with an optimum at pH 9.5. According to phylogenetic analysis, the group also includes closely related strains isolated previously from the low-salt alkaline Lonar Lake. The novel Methanosalsum group is characterized by high salt tolerance (up to 3.5 M total Na+) and obligate alkaliphilic growth with an optimum at pH 9.5. It has a typical methylotrophic substrate profile, utilizing methanol, methylamines and dimethyl sulfide (at low concentrations) as methanogenic substrates. On the basis of physiological and phylogenetic data, it is proposed that the two groups of soda lake methanogenic isolates are assigned into two novel species, Methanocalculus alkaliphilus sp. nov. (type strain AMF2T = DSM 24457T = UNIQEM U859T) and Methanosalsum natronophilum sp. nov. (type strain AME2T = DSM 24634T = NBRC 110091T).
-
- Actinobacteria
-
-
Streptomyces olivicoloratus sp. nov., an antibiotic-producing bacterium isolated from soil
More LessStrain T13T, isolated from forest soil in Jeollabuk-do, South Korea, exhibited antibiotic production on yeast extract-malt extract-glucose (YMG) medium containing magnesium chloride as a trace mineral, and inhibited the growth of Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus epidermidis, Paenibacillus larvae, Escherichia coli, Candida albicans and Aspergillus niger. Growth occurred at 15–45 °C, pH 4–11 and in the presence of up to 2 % (w/v) NaCl. Biochemical analyses indicated that the predominant menaquinones produced by this strain were MK-9(H6) and MK-9(H8); small amounts of MK-10(H2) and MK-10(H4) were also detected. The polar lipid profile comprised diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine, and the cell-wall peptidoglycan contained ll-diaminopimelic acid, glutamic acid, alanine and glycine. Whole-cell hydrolysates contained glucose, galactose, ribose and rhamnose. The fatty-acid profile of strain T13T was made up predominantly of iso- and anteiso-branched fatty acids. Genetic analyses demonstrated that strain T13T is closely related to Streptomyces gramineus JR-43T (98.29 % 16S rRNA gene sequence similarity), S. graminisoli JR-19T (97.99 %), S. rhizophilus JR-41T (97.86 %), S. longwoodensis LMG 20096T (97.84 %), S. graminifolii JL-22T (97.79 %) and S. yaanensis Z4T (97.56 %), and DNA–DNA hybridization yielded relatedness values of 35.27–43.42 % when T13T was compared to related strains. The results of morphological, chemotaxonomic, phylogenetic and phenotypic analyses confirm that this strain represents a novel species of the genus Streptomyces, for which the name Streptomyces olivicoloratus sp. nov. is proposed. The type strain is T13T ( = KEMB 9005-210T = KACC 18227T = NBRC 110901T).
-
-
-
Lysinibacter cavernae gen. nov., sp. nov., a new member of the family Microbacteriaceae isolated from a karst cave
A Gram-stain-positive, aerobic, straight or slightly bent rod-shaped, non-motile, non-spore-forming bacterium, designated strain CC5-806T, was isolated from a soil sample collected from a wild karst cave in the Wulong region, Chongqing, PR China and examined using a polyphasic approach to clarify its taxonomic position. This bacterium did not produce substrate mycelium or aerial hyphae, and no diffusible pigments were observed on the media tested. Strain CC5-806T grew optimally without NaCl at 20 °C and at pH 7.0. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain CC5-806T belonged to the family Microbacteriaceae and showed the highest levels of 16S rRNA gene sequence similarities with Frigoribacterium endophyticum EGI 6500707T (97.56 %), Frigoribacterium faeni 801T (97.53 %) and Glaciihabitans tibetensis MP203T (97.42 %). Phylogenetic trees revealed that strain CC5-806T did not show a clear affiliation to any genus within the family Microbacteriaceae. The DNA G+C content of strain CC5-806T was 62.6 mol%. The cell-wall peptidoglycan contained l-lysine as a diagnostic diamino acid. The predominant menaquinones were MK-11, MK-10 and MK-9. Phosphatidylglycerol, diphosphatidylglycerol, an unidentified glycolipid, four unidentified phospholipids and other polar lipids were detected in the polar lipid extracts. The major fatty acids were anteiso-C15 : 0, iso-C16 : 0 and iso-C14 : 0. On the basis of the phylogenetic analysis, and phenotypic and chemotaxonomic characteristics, strain CC5-806T was distinguishable from phylogenetically related genera in the family Microbacteriaceae. It represents a novel species of a novel genus, for which the name Lysinibacter cavernae gen. nov., sp. nov. is proposed. The type strain is CC5-806T ( = DSM 27960T = CGMCC 1.14983T).
-
-
-
Tenggerimyces mesophilus gen. nov., sp. nov., a member of the family Nocardioidaceae
More LessA novel aerobic actinomycete, designated strain I12A-02601T, was isolated from a desert soil crusts sample collected from the Shapotou region of Tengger Desert, north-west China. The substrate mycelia of this isolate were well-developed and branched, but not fragmented. The maturity aerial mycelia formed short chains of small, rod-shaped spores. The strain contained ll-diaminopimelic acid, dd-diaminopimelic acid, galactose, glucose, ribose and xylose in its whole-cell hydrolysates. The polar lipids consisted of diphosphatidylglycerol, N-acetylglucosamine-containing phospholipids, phosphatidylinositolmannoside and glycolipids. The predominant menaquinones were MK-10(H6) and MK-10(H8). The major fatty acids were iso-C15 : 0, anteiso-C15 : 0, C16 : 0, anteiso-C17 : 0 and iso-C16 : 0. The G+C content of the genomic DNA was 72.2 mol%. The 16S rRNA gene sequences comparison showed that strain I12A-02601T was most closely related to members of the family Nocardioidaceae, such as Actinopolymorpha alba YIM 48868T (93.3 % sequence similarity), Actinopolymorpha pittospori PIP 143T (93.2 %), and Flindersiella endophytica EUM 378T (93.2 %). In the phylogenetic tree based on 16S rRNA gene sequences, strain I12A-02601T formed a clade with the members of the genera Flindersiella, Thermasporomyces, and Actinopolymorpha in the family Nocardioidaceae. Combined data from this taxonomic study using a polyphasic approach, led to the conclusion that strain I12A-02601T represents a novel species of a new genus in the family Nocardioidaceae, for which the name Tenggerimyces mesophilus gen. nov., sp. nov. is proposed. The type strain of the type species is I12A-02601T ( = CPCC 203544T = DSM 45829T = NBRC 109454T).
-
-
-
Geodermatophilus sabuli sp. nov., a γ-radiation-resistant actinobacterium isolated from desert limestone
A novel γ-radiation-resistant and Gram-staining-positive actinobacterium designated BMG 8133T was isolated from a limestone collected in the Sahara desert of Tunisia. The strain produced dry, pale-pink colonies with an optimum growth at 35–40 °C and pH 6.5–8.0. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diamino acid. The main polar lipids were phosphatidylcholine, diphosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine and one unspecified glycolipid. MK-9(H4) was the dominant menaquinone. Galactose and glucose were detected as diagnostic sugars. The major cellular fatty acids were branched-chain saturated acids iso-C16 : 0 and iso-C15 : 0. The DNA G+C content of the novel strain was 74.5 %. The 16S rRNA gene sequence showed highest sequence identity with Geodermatophilus ruber (98.3 %). Based on phenotypic results and 16S rRNA gene sequence analysis, strain BMG 8133T is proposed to represent a novel species, Geodermatophilus sabuli sp. nov. The type strain is BMG 8133T ( = DSM 46844T = CECT 8820T).
-
-
-
Nocardiopsis oceani sp. nov. and Nocardiopsis nanhaiensis sp. nov., actinomycetes isolated from marine sediment of the South China Sea
Two actinomycete strains, designated 10A08AT and 10A08BT, were isolated from marine sediment samples of the South China Sea and their taxonomic positions were determined by a polyphasic approach. The two Gram-stain-positive, aerobic strains produced branched substrate mycelium and aerial hyphae, and no diffusible pigment was produced in the media tested. At maturity, spore chains were formed on aerial hyphae and all mycelium fragmented with age. Whole-cell hydrolysates of both strains contained meso-diaminopimelic acid and no diagnostic sugars. Their predominant menaquinones (>10 %) were MK-9(H4), MK-9(H6) and MK-10(H6) for strain 10A08AT and MK-9(H4), MK-9(H6), MK-10(H4) and MK-10(H6) for strain 10A08BT. The polar lipids detected from the two strains were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and unknown phosphoglycolipids and phospholipids. The major fatty acids (>10 %) of both strains were iso-C16 : 0 and summed feature 4 (iso-C17 : 1 I and/or anteiso-C17 : 1 B). The genomic DNA G+C contents of strains 10A08AT and 10A08BT were 70.9 and 71.6 mol%, respectively. On the basis of 16S rRNA gene sequence similarities, the two strains were shown to be most closely related to species of the genus Nocardiopsis. DNA–DNA hybridization relatedness values of < 70 % between these two isolates and their closest neighbour, Nocardiopsis terrae YIM 90022T, and between the two strains supported the conclusion that they represent two novel species. Based on phylogenetic analysis and phenotypic and genotypic data, it is concluded that the two isolates belong to the genus Nocardiopsis, and the names Nocardiopsis oceani sp. nov. (type strain 10A08AT = DSM 45931T = BCRC 16951T) and Nocardiopsis nanhaiensis sp. nov. (type strain 10A08BT = CGMCC 47227T = BCRC 16952T) are proposed.
-
-
-
Jatrophihabitans fulvus sp. nov., an actinobacterium isolated from grass soil
More LessA Gram-stain-positive, aerobic, non-motile, non-spore-forming, rod-shaped bacterium, designated strain PB158T, was isolated from grass soil sampled in Daejeon, Republic of Korea. Comparative 16S rRNA gene sequence studies placed the novel isolate in the class Actinobacteria, and most closely related to Jatrophihabitans endophyticus S9-650T and Jatrophihabitans soli KIS75-12T with 98.1 and 97.0 % 16S rRNA gene sequence similarity, respectively. Cells of strain PB158T formed yellow colonies on R2A agar, contained MK-9(H4) as the predominant menaquinone, meso-diaminopimelic acid as the diagnostic diamino acid, and included iso-C16 : 0, C18 : 1ω9c, and C17 : 1ω8c as the major fatty acids (>5 %). The acyl type was found to be N-glycolylated. The G+C content of genomic DNA of strain PB158T was 72.4 mol%. In DNA–DNA hybridizations, the DNA–DNA relatedness value observed between strain PB158T and the type strain of J. endophyticus was 21.8 % indicating that the two strains do not belong to the same species. Thus, the combined genotypic and phenotypic data supported the conclusion that strain PB158T represents a novel species of the genus Jatrophihabitans, for which the name Jatrophihabitans fulvus sp. nov. is proposed. The type strain is PB158T ( = KCTC 33605T = JCM 30448T).
-
-
-
Streptomyces gilvifuscus sp. nov., an actinomycete that produces antibacterial compounds isolated from soil
More LessThis study describes a novel actinomycete, designated T113T, which was isolated from forest soil in Pyeongchang-gun, Republic of Korea, and is an aerobic, Gram-stain-positive actinobacterium that forms flexibilis chains of smooth, elliptical or short rod-shaped spores. The results of 16S rRNA sequence analysis indicated that strain T113T exhibited high levels of similarity to previously characterized species of the genus Streptomyces (98.19–98.89 %, respectively). However, the results of phylogenetic and DNA–DNA hybridization analyses confirmed that the organism represented a novel member of the genus Streptomyces. Furthermore, using chemotaxonomic and phenotypic analyses it was demonstrated that the strain exhibited characteristics similar to those of other members of the genus Streptomyces. The primary cellular fatty acids expressed by this strain included anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0 and iso-C16 : 0. While diphosphatidylglycerol and phosphatidylethanolamine were the predominant lipids expressed by strain T113T, moderate amounts of phosphatidylinositol and phosphatidylinositol mannoside were also detected. Whole-cell hydrolysates contained glucose and ribose, and the predominant menaquinone detected was MK-9 (H6); however, moderate amounts of MK-9 (H8) and trace amounts of MK-10 (H2) and MK-10 (H4) were also detected. We therefore propose that strain T113T be considered as representing a novel species of the genus Streptomyces and propose the name Streptomyces gilvifuscus sp. nov. for this species, with strain T113T ( = KEMB 9005-213T = KACC 18248T = NBRC 110904T) being the type strain.
-
-
-
Streptomyces sasae sp. nov., isolated from bamboo (Sasa borealis) rhizosphere soil
More LessA novel strain of Gram-staining-positive actinobacterium, designated strain JR-39T, was isolated from the rhizosphere soil of bamboo (Sasa borealis) sampled in Damyang, Korea, and its taxonomic position was investigated by a polyphasic approach. The isolate formed flexuous chains of spores that were cylindrical and smooth-surfaced. Strain JR-39T grew at 4–37 °C (optimum 28 °C). The pH range for growth was pH 5–10 (optimum pH 6–8) and the NaCl range for growth was 0–5 % (w/v) with optimum growth at 1 % NaCl. The cell-wall peptidoglycan contained ll-diaminopimelic acid, glutamic acid, alanine and glycine. Whole-cell hydrolysates mainly contained glucose, mannose, ribose and rhamnose. Predominant menaquinones were MK-9 (H6), MK-9 (H8) and MK-9 (H4). The major cellular fatty acids were anteiso-C15 : 0, iso-C16 : 0, iso-C15 : 0 and iso-C14 : 0. The G+C content of the DNA was 72.3 ± 0.34 mol%. Phylogenetic analyses based on 16S rRNA gene sequence analysis indicated that strain JR-39T belonged to the genus Streptomyces, showing the highest sequence similarity to Streptomyces panaciradicis 1MR-8T (99.4 %), Streptomyces capoamus JCM 4734T (98.8 %), Streptomyces galbus DSM 40089T (98.7 %), Streptomyces longwoodensis LMG 20096T (98.7 %), Streptomyces bungoensis NBRC 15711T (98.7 %) and Streptomyces rhizophilus JR-41T (98.7 %). However, DNA–DNA hybridization assays, as well as physiological and biochemical analyses, showed that strain JR-39T could be differentiated from its closest phylogenetic relatives. On the basis of the phenotypic and genotypic characteristics, strain JR-39T represents a novel species for which the name Streptomyces sasae sp. nov. is proposed. The type strain is JR-39T ( = KACC 17182T = NBRC 109809T).
-
-
-
Microbacterium nanhaiense sp. nov., an actinobacterium isolated from sea sediment
More LessA Gram-staining-positive, heterotrophic, anaerobic, non-spore-forming, non-motile, rod-shaped strain, OAct400T, belonging to the genus Microbacterium was isolated from a sediment collected from a depth of 2093 m in the South China Sea, China. The strain was identified using a polyphasic taxonomic approach. The strain grew well on yeast extract/malt extract agar (ISP 2) and nutrient agar media, and formed no aerial mycelium and no diffusible pigments on any media tested. The strain grew in the presence of 0–8 % (w/v) NaCl (optimum, 2–4 %), at pH 5.0–10.0 (optimum, pH 7.0) and at 4–37 °C (optimum, 28 °C). Strain OAct400T contained ornithine as the diagnostic diamino acid. The whole-cell sugars were dominated by glucose and galactose. The predominant menaquinones were MK-11 (51 %) and MK-10 (24 %). The major phospholipids were phosphatidylglycerol and diphosphatidylglycerol. The major fatty acids were anteiso-C15 : 0 (59.35 %), iso-C16 : 0 (17.89 %) and anteiso-C17 : 0 (16.09 %). DNA–DNA relatedness with Microbacterium amylolyticum DSM 24221T and Microbacterium gubbeenense CIP 107184T, the nearest phylogenetic relatives (97.73 and 97.44 % 16S rRNA gene sequence similarity, respectively) was 31.3 ± 2.1 and 28.7 ± 1.2 %, respectively. On the basis of phenotypic, phylogenetic and genotypic data, a novel species, Microbacterium nanhaiense sp. nov., is proposed. The type strain is OAct400T ( = CGMCC 4.7181T = DSM 26811T = KCTC 29185T).
-
-
-
Kineococcus gypseus sp. nov., isolated from saline sediment
More LessA novel Gram-stain-positive, aerobic, motile, non-spore-forming coccus-shaped actinomycete, designated strain YIM 121300T, was isolated from alkaline sediment in Yuanjiang, Yunnan province, south-west China. Phylogenetic analyses based on the 16S rRNA gene sequence showed that strain YIM 121300T was affiliated to the genus Kineococcus, and was closely related to Kineococcus aurantiacus IFO 15268T (97.3 % similarity). 16S rRNA gene sequence similarity to other species of the genus Kineococcus was < 97 %. The cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid. The whole-cell sugars contained arabinose, galactose, glucose, mannose and ribose. The predominant menaquinone was MK-9(H2). Mycolic acids were not detected. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and an unknown phospholipid. The predominant fatty acids were anteiso-C15 : 0 and anteiso-C15 : 1 A. The G+C content of the genomic DNA was 75.1 mol%. DNA–DNA relatedness (55 ± 4 % to K. aurantiacus IFO 15268T) and differential phenotypic data demonstrated that strain YIM 121300T was distinguished from all related species of the genus Kineococcus. On the basis of data from the present polyphasic study, the organism should be assigned to a novel species of the genus Kineococcus, for which the name Kineococcus gypseus sp. nov. is proposed. The type strain is YIM 121300T ( = CCTCC AA 2013232T = DSM 27627T).
-
-
-
Salininema proteolyticum gen. nov., sp. nov., a halophilic rare actinomycete isolated from wetland soil, and emended description of the family Glycomycetaceae
A Gram-stain-positive actinobacterial strain, Miq-4T, was isolated from soil around Meighan wetland in the centre of Iran. Strain Miq-4T was strictly aerobic, catalase- and oxidase-positive. The isolate grew in the presence of 3–15 % (w/v) NaCl, at 20–40 °C and pH 6.0–11.0. The optimum NaCl, temperature and pH for growth were 7.0 %, 30 °C and 7.0–8.5, respectively. The cell wall of strain Miq-4T contained meso-diaminopimelic acid as the diamino acid and glucose and ribose as the whole-cell sugars. The polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. Strain Miq-4T synthesized cellular fatty acids of anteiso- and iso-branched types, including anteiso-C17 : 0, anteiso- C15 : 0 and iso-C16 : 0, and the major respiratory quinone was MK-9(H4). The G+C content of the genomic DNA was 68.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and characteristic patterns of 16S rRNA gene signature nucleotides revealed that strain Miq-4T belongs to the family Glycomycetaceae and showed the closest phylogenetic similarity with Haloglycomyces albus YIM 92370T (94.1 % 16S rRNA gene sequence similarity). On the basis of phylogenetic analysis and phenotypic and chemotaxonomic characteristics, strain Miq-4T represents a novel species of a new genus in the family Glycomycetaceae, for which the name Salininema proteoliyticum gen. nov., sp. nov. is proposed. The type strain of the type species is Miq-4T ( = IBRC-M 10908T = LMG 28391T). An emended description of the family Glycomycetaceae is also proposed in order to include features of the new genus.
-
- Firmicutes and related organisms
-
-
Taxonomic description and genome sequence of Bacillus campisalis sp. nov., a member of the genus Bacillus isolated from a solar saltern
The taxonomic position of a Gram-stain positive bacterium isolated from a solar saltern sample collected from Kanyakumari, coastal region of the Bay of Bengal, India, was analysed by using a polyphasic approach. The isolated strain, designated SA2-6T, had phenotypic characteristics that matched those of the genus Bacillus. The 16S rRNA gene sequence (1493 bases) of the novel strain was compared with those of previously studied Bacillus type strains and confirmed that the strain belongs to the genus Bacillus and was moderately closely related to the type strain of Bacillus foraminis at 97.5 % 16S rRNA gene sequence similarity, followed by those of Bacillus thioparans (96.9 %), Bacillus subterraneus (96.8 %), Bacillus jeotgali (96.6 %), Bacillus selenatarsenatis (96.6 %) and Bacillus boroniphilus (96.6 %). 16S rRNA gene sequence analysis indicated that strain SA2-6T differs from all other species of the genus Bacillus by at least 2.5 %. It contained MK-7 as the predominant menaquinone, meso-diaminopimelic acid as the diagnostic cell-wall diamino acid, and iso-C15 : 0 and anteiso-C15 : 0 as major fatty acids. Major lipids were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). Based on data from this polyphasic study, strain SA2-6T is considered to represent a novel species of the genus Bacillus, for which the name Bacillus campisalis sp. nov. is proposed. The type strain is SA2-6T ( = MTCC 11848T = DSM 28801T). The draft genome of strain SA2-6T consisted of 5 183 363 bp with G+C content of 45.44 mol%, 5352 predicted coding sequences, 191 RNAs and 479 subsystems.
-
-
-
Reclassification of Acetomicrobium faecale as Caldicoprobacter faecalis comb. nov.
More LessTaking into account its phenotypical and genetic characteristics, Acetomicrobium faecale was first recognized as a member of the genus Acetomicrobium, family Bacteroidaceae, order Bacteroidales, phylum Bacteroidetes, with Acetomicrobium flavidum the type species of the genus. However, it was found that A. faecale had 95.8 %, 97.6 % and 98.4 % similarity, respectively, with Caldicoprobacter guelmensis, Caldicoprobacter algeriensis and Caldicoprobacter oshimai and only 82 % similarity with A. flavidum. The DNA G+C content of A. faecale is 45 mol , which is of the same order as the DNA G+C content of the three strains of species of the genus Caldicoprobacter and its main fatty acid is C16 : 0, with its second most prominent fatty acid, iso-C17 : 0, also common to strains of species of the genus Caldicoprobacter. On the basis of further phylogenetic, genetic and chemotaxonomic studies, we propose that A. faecale (type strain DSM 20678T = JCM 30420T) be reclassified as Caldicoprobacter faecalis comb. nov.
-
-
-
Anaerobium acetethylicum gen. nov., sp. nov., a strictly anaerobic, gluconate-fermenting bacterium isolated from a methanogenic bioreactor
More LessA novel strictly anaerobic, mesophilic bacterium was enriched and isolated with gluconate as sole substrate from a methanogenic sludge collected from a biogas reactor. Cells of strain GluBS11T stained Gram-positive and were non-motile, straight rods, measuring 3.0–4.5 × 0.8–1.2 μm. The temperature range for growth was 15–37 °C, with optimal growth at 30 °C, the pH range was 6.5–8.5, with optimal growth at pH 7, and the generation time under optimal conditions was 60 min. API Rapid 32A reactions were positive for α-galactosidase, α-glucosidase and β-glucosidase and negative for catalase and oxidase. A broad variety of substrates was utilized, including gluconate, glucose, fructose, maltose, sucrose, lactose, galactose, melezitose, melibiose, mannitol, erythritol, glycerol and aesculin. Products of gluconate fermentation were ethanol, acetate, formate, H2 and CO2. Neither sulfate nor nitrate served as an electron acceptor. Predominant cellular fatty acids (>10 %) were C14 : 0, C16 : 0, C16 : 1ω7c/iso-C15 : 0 2-OH and C18 : 1ω7c. The DNA G+C content of strain GluBS11T was 44.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequence data revealed that strain GluBS11T is a member of subcluster XIVa within the order Clostridiales. The closest cultured relatives are Clostridium herbivorans (93.1 % similarity to the type strain), Clostridium populeti (93.3 %), Eubacterium uniforme (92.4 %) and Clostridium polysaccharolyticum (91.5 %). Based on this 16S rRNA gene sequence divergence (>6.5 %) as well as on chemotaxonomic and phenotypic differences from these taxa, strain GluBS11T is considered to represent a novel genus and species, for which the name Anaerobium acetethylicum gen. nov., sp. nov. is proposed. The type strain of Anaerobium acetethylicum is GluBS11T ( = LMG 28619T = KCTC 15450T = DSM 29698T).
-
-
-
Lactobacillus vespulae sp. nov., isolated from gut of a queen wasp (Vespula vulgaris)
More LessA Gram-stain-positive, oxidase- and catalase-negative, rod-shaped, facultatively anaerobic bacterial strain, DCY75T, was isolated from a queen wasp (Vespula vulgaris). Growth occurred at 4–37 °C (optimum, 30 °C), at pH 3.5–8.0 (optimum, pH 5.0–6.0) and with ≤ 7.0 % (w/v) NaCl. Strain DCY75T produced gas during growth on glucose. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain DCY75T belonged to the genus Lactobacillus and was closely related to Lactobacillus sanfranciscensis ATCC 27651T and Lactobacillus lindneri DSM 20690T at sequence similarities of 96.7 and 96.4 %, respectively. A comparison of two housekeeping genes, pheS and rpoA, revealed that strain DCT75T was well separated from other species of the genus Lactobacillus. Strain DCY75T produced d- and l-lactic acid isomers in a ratio of 22.5 : 77.5 (v/v). The major fatty acids were summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c), C16 : 0, C18 : 1ω9c and C18 : 0.The peptidoglycan structure was of the A4α (l-Lys–d-Asp) type. Cell-wall sugars were glucose, galactose and ribose. The DNA G+C content was 35.5 ± 1.3 mol%. Based on phenotypic and genotypic properties, strain DCY75T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus vespulae sp. nov. is proposed. The type strain is DCY75T ( = KCTC 21023T = JCM 19742T).
-
-
-
Planococcus faecalis sp. nov., a carotenoid-producing species isolated from stools of Antarctic penguins
More LessTaxonomic studies were performed on a novel carotenoid-producing strain, designated AJ003T, isolated from faeces of Antarctic penguins. Cells of strain AJ003T were aerobic, Gram-stain-positive, cocci-shaped and orange. Strain AJ003T was capable of growing in a broad temperature range, including sub-zero growth (below − 20 to 30 °C). 16S rRNA gene sequence analysis revealed that strain AJ003T was closely related to Planococcus halocryophilus Or1T (97.4 % similarity), Planococcus antarcticus DSM 14505T (97.3 %), Planococcus kocurii NCIMB 629T (97.3 %), and Planococcus donghaensis JH1T (97.1 %). The predominant cellular fatty acids were anteiso-C15 : 0, and iso-C16 : 0.MK-7 and MK-8 were the quinones identified, and the major pigment was glycosyl-4,4′-diaponeurosporen-4′-ol-4-oic acid. The major polar lipid was phosphatidylglycerol. DNA–DNA relatedness of strain AJ003T with respect to its closest phylogenetic neighbours was 38.2 ± 0.5 % for Planococcus halocryophilus DSM 24743T, 32.2 ± 0.2 % for Planococcus antarcticus DSM 14505T, 21.0 ± 0.3 % for Planococcus kocurii DSM 20747T and 18.6 ± 1.4 % for Planococcus donghaensis KCTC 13050T. The DNA G+C content of strain AJ003T was 40.0 ± 0.6 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain AJ003T is concluded to represent a novel species of the genus Planococcus, for which the name Planococcus faecalis sp. nov. is proposed. The type strain is AJ003T ( = KCTC 33580T = CECT 8759T).
-
-
-
Paenibacillus physcomitrellae sp. nov., isolated from the moss Physcomitrella patens
More LessA Gram-stain-positive, facultatively anaerobic and rod-shaped bacterium, designated strain XBT, was isolated from Physcomitrella patens growing in Beijing, China. The isolate was identified as a member of the genus Paenibacillus based on phenotypic characteristics and phylogenetic inferences. The novel strain was spore-forming, motile, catalase-negative and weakly oxidase-positive. Optimal growth of strain XBT occurred at 28°C and pH 7.0–7.5. The major polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and several unidentified components, including one phospholipid, two aminophospholipids, three glycolipids, one aminolipid and one lipid. The predominant isoprenoid quinone was MK-7. The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major fatty acid components (>5 %) were anteiso-C15 : 0 (51.2 %), anteiso-C17 : 0 (20.6 %), iso-C16 : 0 (8.3 %) and C16 : 0 (6.7 %). The G+C content of the genomic DNA was 53.3 mol%. Phylogenetic analysis, based on the 16S rRNA gene sequence, showed that strain XBT fell within the evolutionary distances encompassed by the genus Paenibacillus; its closest phylogenetic neighbour was Paenibacillus yonginensis DCY84T (96.6 %). Based on phenotypic, chemotaxonomic and phylogenetic properties, strain XBT is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus physcomitrellae sp. nov., is proposed. The type strain is XBT ( = CGMCC 1.15044T = DSM 29851T).
-
Volumes and issues
-
Volume 74 (2024)
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)