1887

Abstract

A Gram-negative-staining, aerobic, non-motile, non-spore-forming, rod-shaped and yellow-pigmented bacterium, designated R11H, was isolated from a soil sample collected from a hexachlorocyclohexane dumpsite located at Ummari village, Lucknow, Uttar Pradesh, India. The 16S rRNA gene sequence similarity between strain R11H and the type strains of species of genus with validly published names ranged from 93.75 to 97.85 %. Strain R11H showed the highest 16S rRNA gene sequence similarity to DS15 (97.85 %), followed by JCM15910 (97.79 %), KCTC 12582 (97.77 %) and KCTC 22112 (97.34 %). The DNA G+C content of strain R11H was 63.5 mol%. DNA–DNA relatedness between strain R11H and its closest phylogenetic neighbours was well below the threshold value of 70 %, which suggested that strain R11H represents a novel species of the genus . The major polar lipids of strain R11H were sphingoglycolipid and other lipids commonly reported in this genus, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol and phosphatidylmonomethylethanolamine. Spermidine was detected as the major polyamine. The chemotaxonomic markers in strain R11H confirmed its classification in the genus , i.e. Q-10 as the major ubiquinone and summed feature 8 (Cω7 and/or Cω6), summed feature 3 (Cω7 and/or Cω6), C and C 2-OH as the predominant fatty acids. Results obtained from DNA–DNA hybridization and chemotaxonomic and phenotypic analyses clearly distinguished strain R11H from its closest phylogenetic neighbours. Thus, strain R11H represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is R11H ( = DSM 28472 = MCC 2778).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000482
2015-10-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3720.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000482&mimeType=html&fmt=ahah

References

  1. Altschul S.F. , Gish W. , Miller W. , Myers E.W. , Lipman D.J. . ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bala K. , Sharma P. , Lal R. . ( 2010;). Sphingobium quisquiliarum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH-contaminated soil. Int J Syst Evol Microbiol 60: 429–433 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bligh E.G. , Dyer W.J. . ( 1959;). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911–917 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bowman J.P. , Nichols C.M. , Gibson J.A.E. . ( 2003;). Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 53: 1343–1355 [CrossRef] [PubMed].
    [Google Scholar]
  5. Brosius J. , Palmer M.L. , Kennedy P.J. , Noller H.F. . ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75: 4801–4805 [CrossRef] [PubMed].
    [Google Scholar]
  6. Busse H.-J. , Auling G. . ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11: 1–8 [CrossRef].
    [Google Scholar]
  7. Busse H.-J. , Bunka S. , Hensel A. , Lubitz W. . ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47: 698–708 [CrossRef].
    [Google Scholar]
  8. Choi J.H. , Kim M.S. , Jung M.J. , Roh S.W. , Shin K.S. , Bae J.W. . ( 2010;). Sphingopyxis soli sp. nov., isolated from landfill soil. Int J Syst Evol Microbiol 60: 1682–1686 [CrossRef] [PubMed].
    [Google Scholar]
  9. Collins M.D. , Jones D. . ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45: 316–354 [PubMed].
    [Google Scholar]
  10. Cowan S.T. , Steel K.J. . ( 1965;). Manual for the Identification of Medical Bacteria New York: Cambridge University Press;.
    [Google Scholar]
  11. Dadhwal M. , Jit S. , Kumari H. , Lal R. . ( 2009;). Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. Int J Syst Evol Microbiol 59: 3140–3144 [CrossRef] [PubMed].
    [Google Scholar]
  12. Dwivedi V. , Niharika N. , Lal R. . ( 2013;). Pontibacter lucknowensis sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 63: 309–313 [CrossRef] [PubMed].
    [Google Scholar]
  13. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  14. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  15. Godoy F. , Vancanneyt M. , Martínez M. , Steinbüchel A. , Swings J. , Rehm B.H.A. . ( 2003;). Sphingopyxis chilensis sp. nov., a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate, and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov. Int J Syst Evol Microbiol 53: 473–477 [CrossRef] [PubMed].
    [Google Scholar]
  16. Gonzalez J.M. , Saiz-Jimenez C. . ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4: 770–773 [CrossRef] [PubMed].
    [Google Scholar]
  17. Gunstone F.D. , Jacobsberg F.R. . ( 1972;). Fatty acids, part 35: the preparation and properties of a complete series of methyl epoxyoctadecanoates. Chem Phys Lipids 9: 26–34 [CrossRef].
    [Google Scholar]
  18. Gupta S.K. , Lal D. , Lal R. . ( 2009;). Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 59: 156–161 [CrossRef] [PubMed].
    [Google Scholar]
  19. Jindal S. , Dua A. , Lal R. . ( 2013;). Sphingopyxis indica sp. nov., isolated from a high dose point hexachlorocyclohexane (HCH)-contaminated dumpsite. Int J Syst Evol Microbiol 63: 2186–2191 [CrossRef] [PubMed].
    [Google Scholar]
  20. Jukes T.H. , Cantor C.R. . ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism Vol. 3, pp. 21–132. Edited by Munro H. N. . New York: [CrossRef] Academic Press;.
    [Google Scholar]
  21. Kämpfer P. , Witzenberger R. , Denner E.B.M. , Busse H.-J. , Neef A. . ( 2002;). Sphingopyxis witflariensis sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 52: 2029–2034 [CrossRef] [PubMed].
    [Google Scholar]
  22. Kim M.K. , Im W.T. , Ohta H. , Lee M. , Lee S.T. . ( 2005;). Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria . J Microbiol 43: 152–157 [PubMed].
    [Google Scholar]
  23. Kim O.S. , Cho Y.-J. , Lee K. , Yoon S.-H. , Kim M. , Na H. , Park S.-C. , Jeon Y.S. , Lee J.-H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  24. Kumar M. , Verma M. , Lal R. . ( 2008;). Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. Int J Syst Evol Microbiol 58: 861–865 [CrossRef].
    [Google Scholar]
  25. Kumar R. , Dwivedi V. , Nayyar N. , Verma H. , Singh A.K. , Rani P. , Rao D.L.N. , Lal R. . ( 2015;). Parapedobacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 65: 129–134 [CrossRef] [PubMed].
    [Google Scholar]
  26. Kumari H. , Gupta S.K. , Jindal S. , Katoch P. , Lal R. . ( 2009;). Sphingobium lactosutens sp. nov., isolated from a hexachlorocyclohexane dump site and Sphingobium abikonense sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 59: 2291–2296 [CrossRef] [PubMed].
    [Google Scholar]
  27. Kuykendall L.D. , Roy M.A. , O'Neill J.J. , Devine T.E. . ( 1988;). Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38: 358–361 [CrossRef].
    [Google Scholar]
  28. Larkin M.A. , Blackshields G. , Brown N.P. , Chenna R. , McGettigan P.A. , McWilliam H. , Valentin F. , Wallace I.M. , Wilm A. , other authors . ( 2007;). Clustal W and Clustal x version 2.0.. Bioinformatics 23: 2947–2948 [CrossRef] [PubMed].
    [Google Scholar]
  29. Lee M. , Ten L.N. , Lee H.W. , Oh H.W. , Im W.T. , Lee S.T. . ( 2008;). Sphingopyxis ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 58: 2342–2347 [CrossRef] [PubMed].
    [Google Scholar]
  30. McCarthy A.J. , Cross T. . ( 1984;). A taxonomic study of Thermomonospora and other monosporic actinomycetes. J Gen Microbiol 130: 5–25.
    [Google Scholar]
  31. Miller L.T. . ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16: 584–586 [PubMed].
    [Google Scholar]
  32. Pal R. , Bhasin V.K. , Lal R. . ( 2006;). Proposal to reclassify [Sphingomonas] xenophaga Stolz et al. 2000 and [Sphingomonas] taejonensis Lee et al. 2001 as Sphingobium xenophagum comb. nov. and Sphingopyxis taejonensis comb. nov., respectively. Int J Syst Evol Microbiol 56: 667–670 [CrossRef] [PubMed].
    [Google Scholar]
  33. Prakash O. , Verma M. , Sharma P. , Kumar M. , Kumari K. , Singh A. , Kumari H. , Jit S. , Gupta S.K. , other authors . ( 2007;). Polyphasic approach of bacterial classification – an overview of recent advances. Indian J Microbiol 47: 98–108 [CrossRef] [PubMed].
    [Google Scholar]
  34. Sharma P. , Verma M. , Bala K. , Nigam A. , Lal R. . ( 2010;). Sphingopyxis ummariensis sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 60: 780–784 [CrossRef] [PubMed].
    [Google Scholar]
  35. Singh A. , Lal R. . ( 2009;). Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 59: 162–166 [CrossRef] [PubMed].
    [Google Scholar]
  36. Singh A.K. , Garg N. , Sangwan N. , Negi V. , Kumar R. , Vikram S. , Lal R. . ( 2013;). Pontibacter ramchanderi sp. nov., isolated from hexachlorocyclohexane-contaminated pond sediment. Int J Syst Evol Microbiol 63: 2829–2834 [CrossRef] [PubMed].
    [Google Scholar]
  37. Singh A.K. , Garg N. , Lata P. , Kumar R. , Negi V. , Vikram S. , Lal R. . ( 2014;). Pontibacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 64: 254–259 [CrossRef] [PubMed].
    [Google Scholar]
  38. Singh A.K. , Garg N. , Lal R. . ( 2015;). Pontibacter chinhatensis sp. nov., isolated from pond sediment containing discarded hexachlorocyclohexane isomer waste. Int J Syst Evol Microbiol [CrossRef] [PubMed].
    [Google Scholar]
  39. Srinivasan S. , Kim M.K. , Sathiyaraj G. , Veena V. , Mahalakshmi M. , Kalaiselvi S. , Kim Y.J. , Yang D.C. . ( 2010;). Sphingopyxis panaciterrulae sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 60: 2358–2363 [CrossRef] [PubMed].
    [Google Scholar]
  40. Takeuchi M. , Hamana K. , Hiraishi A. . ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51: 1405–1417 [PubMed].[CrossRef]
    [Google Scholar]
  41. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  42. Tourova T.P. , Antonov A.S. . ( 1988;). Identification of microorganisms by rapid DNA-DNA hybridization. Methods Microbiol 19: 333–355 [CrossRef].
    [Google Scholar]
  43. Vanbroekhoven K. , Ryngaert A. , Bastiaens L. , Wattiau P. , Vancanneyt M. , Swings J. , De Mot R. , Springael D. . ( 2004;). Streptomycin as a selective agent to facilitate recovery and isolation of introduced and indigenous Sphingomonas from environmental samples. Environ Microbiol 6: 1123–1136 [CrossRef] [PubMed].
    [Google Scholar]
  44. Vandamme P. , Pot B. , Gillis M. , de Vos P. , Kersters K. , Swings J. . ( 1996;). Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60: 407–438 [PubMed].
    [Google Scholar]
  45. Wang Z. , Benning C. . ( 2011;). Arabidopsis thaliana polar glycerolipid profiling by thin layer chromatography (TLC) coupled with gas-liquid chromatography (GLC). J Vis Exp 49: 2518 [PubMed].
    [Google Scholar]
  46. Wayne L.G. , Brenner D.J. , Colwell R.R. , Grimont P.A.D. , Kandler O. , Krichevsky M.I. , Moore L.H. , Moore W.E.C. , Murray R.G.E. , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  47. Yoon J.H. , Oh T.K. . ( 2005;). Sphingopyxis flavimaris sp. nov., isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55: 369–373 [CrossRef] [PubMed].
    [Google Scholar]
  48. Zhang D.C. , Liu H.C. , Xin Y.H. , Zhou Y.G. , Schinner F. , Margesin R. . ( 2010;). Sphingopyxis bauzanensis sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 60: 2618–2622 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000482
Loading
/content/journal/ijsem/10.1099/ijsem.0.000482
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error