1887

Abstract

A Gram-stain-negative, motile, rod-shaped, orange-pigmented bacterium able to degrade polycyclic aromatic hydrocarbons was isolated from deep-sea sediment of the Atlantic Ocean and subjected to a polyphasic taxonomic study. The strain, designated s21-N3, could grow at 4–37 °C (optimum 28 °C), at pH 5–10 (optimum pH 7–8) and with 1–7 % (w/v) NaCl (optimum 2–3 %). Strain s21-N3 was positive for nitrate reduction, denitrification, aesculin hydrolysis, oxidase and catalase, but negative for indole production and urease. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain s21-N3 formed a distinct branch within the genus , sharing high similarities with three closely related strains, HWDM-33 (98.67 %), ‘’ KA37 (97.80 %) and K7-2 (97.59 %). The similarities between strain s21-N3 and other type strains of recognized species within the genus ranged from 95.00 to 96.47 %. The digital DNA–DNA hybridization values and average nucleotide identity (ANI) values between strain s21-N3 and the three closely related strains HWDM-33, ‘’ KA37 and K7-2 were 18.60, 18.00 and 18.50 % and 74.24, 72.49 and 72.54 %, respectively. The principal fatty acids were summed feature 8 (Cω7/ω6) and summed feature 3 (Cω7/ω6). The respiratory lipoquinone was identified as Q-10. The major polar lipids comprised sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and diphosphatidylglycerol. The G+C content of the chromosomal DNA was determined to be 58.18 mol%. The combined genotypic and phenotypic distinctiveness demonstrated that strain s21-N3 represents a novel species of the genus , for which the name sp. nov. is proposed, with the type strain s21-N3 ( = MCCC 1A00519 = KCTC 42697).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000481
2015-10-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3714.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000481&mimeType=html&fmt=ahah

References

  1. Auch A.F. , von Jan M. , Klenk H.P. , Göker M. . ( 2010;). Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2: 117–134 [CrossRef] [PubMed].
    [Google Scholar]
  2. Chimetto Tonon L.A. , Moreira A.P.B. , Thompson F. . ( 2014;). The family Erythrobacteraceae . . In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria , 4th edn.., pp. 213–235. Edited by Rosenberg E. , DeLong E. F. , Lory S. , Stackebrandt E. , Thompson F. . Berlin: Springer;.[CrossRef]
    [Google Scholar]
  3. Denner E.B. , Vybiral D. , Koblízek M. , Kämpfer P. , Busse H.J. , Velimirov B. . ( 2002;). Erythrobacter citreus sp. nov., a yellow-pigmented bacterium that lacks bacteriochlorophyll a, isolated from the western Mediterranean Sea. Int J Syst Evol Microbiol 52: 1655–1661 [CrossRef] [PubMed].
    [Google Scholar]
  4. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  5. Goris J. , Konstantinidis K.T. , Klappenbach J.A. , Coenye T. , Vandamme P. , Tiedje J.M. . ( 2007;). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57: 81–91 [CrossRef] [PubMed].
    [Google Scholar]
  6. Hansen G.H. , Sørheim R. . ( 1991;). Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13: 231–241 [CrossRef].
    [Google Scholar]
  7. Ivanova E.P. , Bowman J.P. , Lysenko A.M. , Zhukova N.V. , Gorshkova N.M. , Kuznetsova T.A. , Kalinovskaya N.I. , Shevchenko L.S. , Mikhailov V.V. . ( 2005;). Erythrobacter vulgaris sp. nov., a novel organism isolated from the marine invertebrates. Syst Appl Microbiol 28: 123–130 [CrossRef] [PubMed].
    [Google Scholar]
  8. Jung Y.T. , Park S. , Oh T.K. , Yoon J.H. . ( 2012;). Erythrobacter marinus sp. nov., isolated from seawater. Int J Syst Evol Microbiol 62: 2050–2055 [CrossRef] [PubMed].
    [Google Scholar]
  9. Jung Y.T. , Park S. , Lee J.S. , Yoon J.H. . ( 2014;). Erythrobacter lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 64: 4184–4190 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  11. Lane D.J. . ( 1991;). 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics 125–175.
    [Google Scholar]
  12. Lee Y.S. , Lee D.H. , Kahng H.Y. , Kim E.M. , Jung J.S. . ( 2010;). Erythrobacter gangjinensis sp. nov., a marine bacterium isolated from seawater. Int J Syst Evol Microbiol 60: 1413–1417 [CrossRef] [PubMed].
    [Google Scholar]
  13. Lei X. , Zhang H. , Chen Y. , Li Y. , Chen Z. , Lai Q. , Zhang J. , Zheng W. , Xu H. , Zheng T. . ( 2015;). Erythrobacter luteus sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol [CrossRef] [Epub ahead of print]. [CrossRef] [PubMed].
    [Google Scholar]
  14. Minnikin D.E. , O'Donnell A.G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J.H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  15. Richter M. , Rosselló-Móra R. . ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 19126–19131 [CrossRef] [PubMed].
    [Google Scholar]
  16. Rzhetsky A. , Nei M. . ( 1992;). Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 35: 367–375 [CrossRef] [PubMed].
    [Google Scholar]
  17. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  18. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  19. Shiba T. , Simidu U. . ( 1982;). Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a . Int J Syst Bacteriol 32: 211–217 [CrossRef].
    [Google Scholar]
  20. Subhash Y. , Tushar L. , Sasikala Ch. , Ramana Ch.V. . ( 2013;). Erythrobacter odishensis sp. nov. and Pontibacter odishensis sp. nov. isolated from dry soil of a solar saltern. Int J Syst Evol Microbiol 63: 4524–4532 [CrossRef] [PubMed].
    [Google Scholar]
  21. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  22. Wayne L. , Brenner D. , Colwell R. , Grimont P. , Kandler O. , Krichevsky M. , Moore L. , Moore W. , Murray R. , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  23. Wei J. , Mao Y. , Zheng Q. , Zhang R. , Wang Y.N. , Jiao N. . ( 2013;). Erythrobacter westpacificensis sp. nov., a marine bacterium isolated from the Western Pacific. Curr Microbiol 66: 385–390 [CrossRef] [PubMed].
    [Google Scholar]
  24. Wu H.X. , Lai P.Y. , Lee O.O. , Zhou X.J. , Miao L. , Wang H. , Qian P.Y. . ( 2012;). Erythrobacter pelagi sp. nov., a member of the family Erythrobacteraceae isolated from the Red Sea. Int J Syst Evol Microbiol 62: 1348–1353 [CrossRef] [PubMed].
    [Google Scholar]
  25. Xu M. , Xin Y. , Yu Y. , Zhang J. , Zhou Y. , Liu H. , Tian J. , Li Y. . ( 2010;). Erythrobacter nanhaisediminis sp. nov., isolated from marine sediment of the South China Sea. Int J Syst Evol Microbiol 60: 2215–2220 [CrossRef] [PubMed].
    [Google Scholar]
  26. Yoon J.H. , Kim H. , Kim I.G. , Kang K.H. , Park Y.H. . ( 2003;). Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 53: 1169–1174 [CrossRef] [PubMed].
    [Google Scholar]
  27. Yoon J.H. , Kang K.H. , Oh T.K. , Park Y.H. . ( 2004;). Erythrobacter aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54: 1981–1985 [CrossRef] [PubMed].
    [Google Scholar]
  28. Yoon J.H. , Oh T.K. , Park Y.H. . ( 2005;). Erythrobacter seohaensis sp. nov. and Erythrobacter gaetbuli sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55: 71–75 [CrossRef] [PubMed].
    [Google Scholar]
  29. Yoon B.J. , Lee D.H. , Oh D.C. . ( 2013;). Erythrobacter jejuensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 63: 1421–1426 [CrossRef] [PubMed].
    [Google Scholar]
  30. Yurkov V. , Stackebrandt E. , Holmes A. , Fuerst J.A. , Hugenholtz P. , Golecki J. , Gad'on N. , Gorlenko V.M. , Kompantseva E.I. , Drews G. . ( 1994;). Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44: 427–434 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000481
Loading
/content/journal/ijsem/10.1099/ijsem.0.000481
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error