1887

Abstract

A Gram-stain-negative, motile, rod-shaped, orange-pigmented bacterium able to degrade polycyclic aromatic hydrocarbons was isolated from deep-sea sediment of the Atlantic Ocean and subjected to a polyphasic taxonomic study. The strain, designated s21-N3, could grow at 4–37 °C (optimum 28 °C), at pH 5–10 (optimum pH 7–8) and with 1–7 % (w/v) NaCl (optimum 2–3 %). Strain s21-N3 was positive for nitrate reduction, denitrification, aesculin hydrolysis, oxidase and catalase, but negative for indole production and urease. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain s21-N3 formed a distinct branch within the genus , sharing high similarities with three closely related strains, HWDM-33 (98.67 %), ‘’ KA37 (97.80 %) and K7-2 (97.59 %). The similarities between strain s21-N3 and other type strains of recognized species within the genus ranged from 95.00 to 96.47 %. The digital DNA–DNA hybridization values and average nucleotide identity (ANI) values between strain s21-N3 and the three closely related strains HWDM-33, ‘’ KA37 and K7-2 were 18.60, 18.00 and 18.50 % and 74.24, 72.49 and 72.54 %, respectively. The principal fatty acids were summed feature 8 (Cω7/ω6) and summed feature 3 (Cω7/ω6). The respiratory lipoquinone was identified as Q-10. The major polar lipids comprised sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and diphosphatidylglycerol. The G+C content of the chromosomal DNA was determined to be 58.18 mol%. The combined genotypic and phenotypic distinctiveness demonstrated that strain s21-N3 represents a novel species of the genus , for which the name sp. nov. is proposed, with the type strain s21-N3 ( = MCCC 1A00519 = KCTC 42697).

Funding
This study was supported by the:
  • , High-Tech Research and Development Program of China (No. 2012AA092102), National Infrastructure of Microbial Resources of China , (Award 41106151, 41176154)
  • , Project of the National Science Foundation of China
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000481
2015-10-01
2020-09-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3714.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000481&mimeType=html&fmt=ahah

References

  1. Auch A.F., von Jan M., Klenk H.P., Göker M. ( 2010;). Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2 117134 [CrossRef] [PubMed].
    [Google Scholar]
  2. Chimetto Tonon L.A., Moreira A.P.B., Thompson F. ( 2014;). The family Erythrobacteraceae . . In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria , 4th edn.., pp. 213235. Edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F. Berlin: Springer;. [CrossRef]
    [Google Scholar]
  3. Denner E.B., Vybiral D., Koblízek M., Kämpfer P., Busse H.J., Velimirov B. ( 2002;). Erythrobacter citreus sp. nov., a yellow-pigmented bacterium that lacks bacteriochlorophyll a, isolated from the western Mediterranean Sea. Int J Syst Evol Microbiol 52 16551661 [CrossRef] [PubMed].
    [Google Scholar]
  4. Felsenstein J. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17 368376 [CrossRef] [PubMed].
    [Google Scholar]
  5. Goris J., Konstantinidis K.T., Klappenbach J.A., Coenye T., Vandamme P., Tiedje J.M. ( 2007;). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57 8191 [CrossRef] [PubMed].
    [Google Scholar]
  6. Hansen G.H., Sørheim R. ( 1991;). Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13 231241 [CrossRef].
    [Google Scholar]
  7. Ivanova E.P., Bowman J.P., Lysenko A.M., Zhukova N.V., Gorshkova N.M., Kuznetsova T.A., Kalinovskaya N.I., Shevchenko L.S., Mikhailov V.V. ( 2005;). Erythrobacter vulgaris sp. nov., a novel organism isolated from the marine invertebrates. Syst Appl Microbiol 28 123130 [CrossRef] [PubMed].
    [Google Scholar]
  8. Jung Y.T., Park S., Oh T.K., Yoon J.H. ( 2012;). Erythrobacter marinus sp. nov., isolated from seawater. Int J Syst Evol Microbiol 62 20502055 [CrossRef] [PubMed].
    [Google Scholar]
  9. Jung Y.T., Park S., Lee J.S., Yoon J.H. ( 2014;). Erythrobacter lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 64 41844190 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62 716721 [CrossRef] [PubMed].
    [Google Scholar]
  11. Lane D.J. ( 1991;). 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics 125175.
    [Google Scholar]
  12. Lee Y.S., Lee D.H., Kahng H.Y., Kim E.M., Jung J.S. ( 2010;). Erythrobacter gangjinensis sp. nov., a marine bacterium isolated from seawater. Int J Syst Evol Microbiol 60 14131417 [CrossRef] [PubMed].
    [Google Scholar]
  13. Lei X., Zhang H., Chen Y., Li Y., Chen Z., Lai Q., Zhang J., Zheng W., Xu H., Zheng T. ( 2015;). Erythrobacter luteus sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol [CrossRef] [Epub ahead of print]. [CrossRef] [PubMed].
    [Google Scholar]
  14. Minnikin D.E., O'Donnell A.G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.H. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2 233241 [CrossRef].
    [Google Scholar]
  15. Richter M., Rosselló-Móra R. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106 1912619131 [CrossRef] [PubMed].
    [Google Scholar]
  16. Rzhetsky A., Nei M. ( 1992;). Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 35 367375 [CrossRef] [PubMed].
    [Google Scholar]
  17. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425 [PubMed].
    [Google Scholar]
  18. Sasser M. ( 1990). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  19. Shiba T., Simidu U. ( 1982;). Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a . Int J Syst Bacteriol 32 211217 [CrossRef].
    [Google Scholar]
  20. Subhash Y., Tushar L., Sasikala Ch., Ramana Ch.V. ( 2013;). Erythrobacter odishensis sp. nov. and Pontibacter odishensis sp. nov. isolated from dry soil of a solar saltern. Int J Syst Evol Microbiol 63 45244532 [CrossRef] [PubMed].
    [Google Scholar]
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 27312739 [CrossRef] [PubMed].
    [Google Scholar]
  22. Wayne L., Brenner D., Colwell R., Grimont P., Kandler O., Krichevsky M., Moore L., Moore W., Murray R., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37 463464 [CrossRef].
    [Google Scholar]
  23. Wei J., Mao Y., Zheng Q., Zhang R., Wang Y.N., Jiao N. ( 2013;). Erythrobacter westpacificensis sp. nov., a marine bacterium isolated from the Western Pacific. Curr Microbiol 66 385390 [CrossRef] [PubMed].
    [Google Scholar]
  24. Wu H.X., Lai P.Y., Lee O.O., Zhou X.J., Miao L., Wang H., Qian P.Y. ( 2012;). Erythrobacter pelagi sp. nov., a member of the family Erythrobacteraceae isolated from the Red Sea. Int J Syst Evol Microbiol 62 13481353 [CrossRef] [PubMed].
    [Google Scholar]
  25. Xu M., Xin Y., Yu Y., Zhang J., Zhou Y., Liu H., Tian J., Li Y. ( 2010;). Erythrobacter nanhaisediminis sp. nov., isolated from marine sediment of the South China Sea. Int J Syst Evol Microbiol 60 22152220 [CrossRef] [PubMed].
    [Google Scholar]
  26. Yoon J.H., Kim H., Kim I.G., Kang K.H., Park Y.H. ( 2003;). Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 53 11691174 [CrossRef] [PubMed].
    [Google Scholar]
  27. Yoon J.H., Kang K.H., Oh T.K., Park Y.H. ( 2004;). Erythrobacter aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54 19811985 [CrossRef] [PubMed].
    [Google Scholar]
  28. Yoon J.H., Oh T.K., Park Y.H. ( 2005;). Erythrobacter seohaensis sp. nov. and Erythrobacter gaetbuli sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 55 7175 [CrossRef] [PubMed].
    [Google Scholar]
  29. Yoon B.J., Lee D.H., Oh D.C. ( 2013;). Erythrobacter jejuensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 63 14211426 [CrossRef] [PubMed].
    [Google Scholar]
  30. Yurkov V., Stackebrandt E., Holmes A., Fuerst J.A., Hugenholtz P., Golecki J., Gad'on N., Gorlenko V.M., Kompantseva E.I., Drews G. ( 1994;). Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44 427434 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000481
Loading
/content/journal/ijsem/10.1099/ijsem.0.000481
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error