1887

Abstract

A Gram-stain-positive, aerobic, non-motile, non-spore-forming, rod-shaped bacterium, designated strain PB158, was isolated from grass soil sampled in Daejeon, Republic of Korea. Comparative 16S rRNA gene sequence studies placed the novel isolate in the class , and most closely related to S9-650 and KIS75-12 with 98.1 and 97.0 % 16S rRNA gene sequence similarity, respectively. Cells of strain PB158 formed yellow colonies on R2A agar, contained MK-9(H) as the predominant menaquinone, -diaminopimelic acid as the diagnostic diamino acid, and included iso-C, Cω9, and Cω8 as the major fatty acids (>5 %). The acyl type was found to be -glycolylated. The G+C content of genomic DNA of strain PB158 was 72.4 mol%. In DNA–DNA hybridizations, the DNA–DNA relatedness value observed between strain PB158 and the type strain of was 21.8 % indicating that the two strains do not belong to the same species. Thus, the combined genotypic and phenotypic data supported the conclusion that strain PB158 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PB158 ( = KCTC 33605 = JCM 30448).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000443
2015-10-01
2020-09-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3476.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000443&mimeType=html&fmt=ahah

References

  1. Bates R.G., Bower V.E. ( 1956;). Alkaline solutions for pH control. Anal Chem 28 13221324 [CrossRef].
    [Google Scholar]
  2. Brunchorst J. ( 1886;). Über einige Wurzelanschwellungen besonders diejenigen von Alnus und den Elaeagnaceen. Bot Inst Tubingen 2 151177 (in German), [CrossRef].
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39 224229 [CrossRef].
    [Google Scholar]
  4. Felsenstein J. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17 368376 [CrossRef] [PubMed].
    [Google Scholar]
  5. Felsenstein J. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 783791 [CrossRef].
    [Google Scholar]
  6. Fitch W.M. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20 406416 [CrossRef].
    [Google Scholar]
  7. Gomori G. ( 1955;). Preparation of buffers for use in enzyme studies. Methods Enzymol 1 138146 [CrossRef].
    [Google Scholar]
  8. Hall T.A. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41 9598.
    [Google Scholar]
  9. Kim S.-J., Moon J.-Y., Lim J.-M., Hamada M., Ahn J.-H., Weon H.-Y., Suzuki K., Kwon S.-W. ( 2015;). Jatrophihabitans soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 65 17591763 [CrossRef] [PubMed].
    [Google Scholar]
  10. Komagata K., Suzuki K. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19 161207 [CrossRef].
    [Google Scholar]
  11. Kumar S., Nei M., Dudley J., Tamura K. ( 2008;). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9 299306 [CrossRef] [PubMed].
    [Google Scholar]
  12. Lane D.J. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;.
    [Google Scholar]
  13. Madhaiyan M., Hu C.J., Kim S.-J., Weon H.-Y., Kwon S.-W., Ji L. ( 2013;). Jatrophihabitans endophyticus gen. nov., sp. nov., an endophytic actinobacterium isolated from a surface-sterilized stem of Jatropha curcas L. Int J Syst Evol Microbiol 63 12411248 [CrossRef] [PubMed].
    [Google Scholar]
  14. Meier-Kolthoff J.P., Göker M., Spröer C., Klenk H.P. ( 2013;). When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195 413418 [CrossRef] [PubMed].
    [Google Scholar]
  15. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425 [PubMed].
    [Google Scholar]
  16. Tamaoka J., Komagata K. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25 125128 [CrossRef].
    [Google Scholar]
  17. Tarrand J.J., Gröschel D.H.M. ( 1982;). Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 16 772774 [PubMed].
    [Google Scholar]
  18. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 48764882 [CrossRef] [PubMed].
    [Google Scholar]
  19. Uchida K., Aida K. ( 1984;). An improved method for the glycolate test for simple identification of acyl type of bacterial cell walls. J Gen Appl Microbiol 30 131134 [CrossRef].
    [Google Scholar]
  20. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., others authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37 463464 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000443
Loading
/content/journal/ijsem/10.1099/ijsem.0.000443
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error