1887

Abstract

A novel aerobic, chemo-organoheterotrophic bacterium, strain Ac_26_B10, was isolated from a semiarid savannah soil collected in northern Namibia (Mashare, Kavango region). Based on analysis of its nearly full-length 16S rRNA gene sequence, the isolate belongs to the genus (family , order , class ) and shares 98.3 and 96.9 % 16S rRNA gene sequence similarity with its closest relatives, DRP 35 and O3SUJ4. Cells were Gram-negative, coccoid to rod-shaped, non-motile and divided by binary fission. Strain Ac_26_B10 showed weak catalase activity and, in contrast to the other described species of the genus , was oxidase-positive. Compared with the already established species of the genus , the novel strain used a larger range of sugars and sugar alcohols for growth, lacked α-mannosidase activity and exhibited a higher temperature optimum of growth. DNA–DNA hybridization studies with its closest phylogenetic relative, DSM 28898, confirmed that strain Ac_26_B10 represents a distinct genomospecies. Its most abundant fatty acids were iso-C, summed feature 3 (Cω7 and/or Cω6) and C. Dominant polar lipids were phosphatidylethanolamine and diphosphatidylglycerol. The predominant menaquinone was MK-8; minor amounts of MK-7 and MK-8(H) were also recorded. The G+C content of the genomic DNA was 58.5 mol%. On the basis of our polyphasic analysis, Ac_26_B10 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Ac_26_B10 ( = DSM 26559 = LMG 27984).

Funding
This study was supported by the:
  • , German Federal Ministry of Science and Education , (Award Biolog/BIOTA project 01LC0621C)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000411
2015-10-01
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3297.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000411&mimeType=html&fmt=ahah

References

  1. Baik K.S., Choi J.S., Kwon J., Park S.C., Hwang Y.M., Kim M.S., Kim E.M., Seo D.C., Cho J.S., Seong C.N. ( 2013;). Terriglobus aquaticus sp. nov., isolated from an artificial reservoir. Int J Syst Evol Microbiol 63 47444749 [CrossRef] [PubMed].
    [Google Scholar]
  2. Barns S.M., Takala S.L., Kuske C.R. ( 1999;). Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65 17311737 [PubMed].
    [Google Scholar]
  3. Barns S.M., Cain E.C., Sommerville L., Kuske C.R. ( 2007;). Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 73 31133116 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bligh E.G., Dyer W.J. ( 1959;). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37 911917 [CrossRef] [PubMed].
    [Google Scholar]
  5. Cashion P., Holder-Franklin M.A., McCully J., Franklin M. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81 461466 [CrossRef] [PubMed].
    [Google Scholar]
  6. Collins M.D., Jones D. ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45 316354 [PubMed].
    [Google Scholar]
  7. Cowan S.T. ( 1974). Cowan and Steel's Manual for the Identification of Medical Bacteria , 2nd edn. New York: Cambridge University Press;.
    [Google Scholar]
  8. Cruickshank R.H., Wade G.C. ( 1980;). Detection of pectic enzymes in pectin-acrylamide gels. Anal Biochem 107 177181 [CrossRef] [PubMed].
    [Google Scholar]
  9. Davis K.E., Joseph S.J., Janssen P.H. ( 2005;). Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71 826834 [CrossRef] [PubMed].
    [Google Scholar]
  10. De Ley J., Cattoir H., Reynaerts A. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12 133142 [CrossRef] [PubMed].
    [Google Scholar]
  11. Dedysh S.N., Kulichevskaya I.S., Serkebaeva Y.M., Mityaeva M.A., Sorokin V.V., Suzina N.E., Rijpstra W.I.C., Sinninghe Damsté J.S. ( 2012;). Bryocella elongata gen. nov., sp. nov., a member of subdivision 1 of the Acidobacteria isolated from a methanotrophic enrichment culture, and emended description of Edaphobacter aggregans Koch et al. 2008. Int J Syst Evol Microbiol 62 654664 [CrossRef] [PubMed].
    [Google Scholar]
  12. Diaby N., Dold B., Pfeifer H.R., Holliger C., Johnson D.B., Hallberg K.B. ( 2007;). Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. Environ Microbiol 9 298307 [CrossRef] [PubMed].
    [Google Scholar]
  13. Eichorst S.A., Breznak J.A., Schmidt T.M. ( 2007;). Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria . Appl Environ Microbiol 73 27082717 [CrossRef] [PubMed].
    [Google Scholar]
  14. Foesel B.U., Rohde M., Overmann J. ( 2013;). Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil – the first described species of Acidobacteria subdivision 4. Syst Appl Microbiol 36 8289 [CrossRef] [PubMed].
    [Google Scholar]
  15. Foesel B.U., Nägele V., Naether A., Wüst P.K., Weinert J., Bonkowski M., Lohaus G., Polle A., Alt F., other authors. ( 2014;). Determinants of Acidobacteria activity inferred from the relative abundances of 16S rRNA transcripts in German grassland and forest soils. Environ Microbiol 16 658675 [CrossRef] [PubMed].
    [Google Scholar]
  16. Gainvors A., Frézier V., Lemaresquier H., Lequart C., Aigle M., Belarbi A. ( 1994;). Detection of polygalacturonase, pectin-lyase and pectin-esterase activities in a Saccharomyces cerevisiae strain. Yeast 10 13111319 [CrossRef] [PubMed].
    [Google Scholar]
  17. Hobel C.F., Marteinsson V.T., Hreggvidsson G.O., Kristjánsson J.K. ( 2005;). Investigation of the microbial ecology of intertidal hot springs by using diversity analysis of 16S rRNA and chitinase genes. Appl Environ Microbiol 71 27712776 [CrossRef] [PubMed].
    [Google Scholar]
  18. Huber K.J., Wüst P.K., Rohde M., Overmann J., Foesel B.U. ( 2014;). Aridibacter famidurans gen. nov., sp. nov. and Aridibacter kavangonensis sp. nov., two novel members of subdivision 4 of the Acidobacteria isolated from semiarid savannah soil. Int J Syst Evol Microbiol 64 18661875 [CrossRef] [PubMed].
    [Google Scholar]
  19. Hugenholtz P., Pitulle C., Hershberger K.L., Pace N.R. ( 1998;). Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180 366376 [PubMed].
    [Google Scholar]
  20. Huss V.A.R., Festl H., Schleifer K.H. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4 184192 [CrossRef] [PubMed].
    [Google Scholar]
  21. Jones R.T., Robeson M.S., Lauber C.L., Hamady M., Knight R., Fierer N. ( 2009;). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3 442453 [CrossRef] [PubMed].
    [Google Scholar]
  22. Joseph S.J., Hugenholtz P., Sangwan P., Osborne C.A., Janssen P.H. ( 2003;). Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69 72107215 [CrossRef] [PubMed].
    [Google Scholar]
  23. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62 716721 [CrossRef] [PubMed].
    [Google Scholar]
  24. Kim M., Oh H.S., Park S.C., Chun J. ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64 346351 [CrossRef] [PubMed].
    [Google Scholar]
  25. Kishimoto N., Kosako Y., Tano T. ( 1991;). Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 22 17 [CrossRef].
    [Google Scholar]
  26. Koch I.H., Gich F., Dunfield P.F., Overmann J. ( 2008;). Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol 58 11141122 [CrossRef] [PubMed].
    [Google Scholar]
  27. Kulichevskaya I.S., Kostina L.A., Valásková V., Rijpstra W.I.C., Sinninghe Damsté J.S., de Boer W., Dedysh S.N. ( 2012;). Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood. Int J Syst Evol Microbiol 62 15121520 [CrossRef] [PubMed].
    [Google Scholar]
  28. Lane D.J. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. New York: Wiley;.
    [Google Scholar]
  29. Lee S.H., Ka J.O., Cho J.C. ( 2008;). Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiol Lett 285 263269 [CrossRef] [PubMed].
    [Google Scholar]
  30. Männistö M.K., Rawat S., Starovoytov V., Häggblom M.M. ( 2011;). Terriglobus saanensis sp. nov., an acidobacterium isolated from tundra soil. Int J Syst Evol Microbiol 61 18231828 [CrossRef] [PubMed].
    [Google Scholar]
  31. Meisinger D.B., Zimmermann J., Ludwig W., Schleifer K.H., Wanner G., Schmid M., Bennett P.C., Engel A.S., Lee N.M. ( 2007;). In situ detection of novel Acidobacteria in microbial mats from a chemolithoautotrophically based cave ecosystem (Lower Kane Cave, WY, USA). Environ Microbiol 9 15231534 [CrossRef] [PubMed].
    [Google Scholar]
  32. Mesbah M., Premachandran U., Whitman W.B. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Microbiol 39 159167.
    [Google Scholar]
  33. Muñoz R., Yarza P., Ludwig W., Euzéby J., Amann R., Schleifer K.H., Glöckner F.O., Rosselló-Móra R. ( 2011;). Release LTPs104 of the All-Species Living Tree. Syst Appl Microbiol 34 169170 [CrossRef] [PubMed].
    [Google Scholar]
  34. Narihiro T., Terada T., Kikuchi K., Iguchi A., Ikeda M., Yamauchi T., Shiraishi K., Kamagata Y., Nakamura K., Sekiguchi Y. ( 2009;). Comparative analysis of bacterial and archaeal communities in methanogenic sludge granules from upflow anaerobic sludge blanket reactors treating various food-processing, high-strength organic wastewaters. Microbes Environ 24 8896 [CrossRef] [PubMed].
    [Google Scholar]
  35. Okamura K., Kawai A., Yamada T., Hiraishi A. ( 2011;). Acidipila rosea gen. nov., sp. nov., an acidophilic chemoorganotrophic bacterium belonging to the phylum Acidobacteria . FEMS Microbiol Lett 317 138142 [CrossRef] [PubMed].
    [Google Scholar]
  36. Pankratov T.A., Dedysh S.N. ( 2010;). Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. Int J Syst Evol Microbiol 60 29512959 [CrossRef] [PubMed].
    [Google Scholar]
  37. Pankratov T.A., Kirsanova L.A., Kaparullina E.N., Kevbrin V.V., Dedysh S.N. ( 2012;). Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria, and emended description of Acidobacterium capsulatum Kishimoto et al. 1991. Int J Syst Evol Microbiol 62 430437 [CrossRef] [PubMed].
    [Google Scholar]
  38. Sasser M. ( 1990). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI, Inc;.
    [Google Scholar]
  39. Scheirlinck T., De Meutter J., Arnaut G., Joos H., Claeyssens M., Michiels F. ( 1990;). Cloning and expression of cellulase and xylanase genes in Lactobacillus plantarum . Appl Microbiol Biotechnol 33 534541 [CrossRef].
    [Google Scholar]
  40. Sinninghe Damsté J.S., Rijpstra W.I.C., Hopmans E.C., Weijers J.W.H., Foesel B.U., Overmann J., Dedysh S.N. ( 2011;). 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Appl Environ Microbiol 77 41474154 [CrossRef] [PubMed].
    [Google Scholar]
  41. Soden D.M., O'Callaghan J., Dobson A.D. ( 2002;). Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiology 148 40034014 [PubMed]. [CrossRef]
    [Google Scholar]
  42. Stackebrandt E., Goebel B.M. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44 846849 [CrossRef].
    [Google Scholar]
  43. Sundman V., Nase L. ( 1971;). A simple plate test for direct visualization for biological lignin degradation. Paper Timber 53 6771.
    [Google Scholar]
  44. Tamaoka J., Komagata K. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25 125128 [CrossRef].
    [Google Scholar]
  45. Tan G.L., Shu W.S., Hallberg K.B., Li F., Lan C.Y., Huang L.N. ( 2007;). Cultivation-dependent and cultivation-independent characterization of the microbial community in acid mine drainage associated with acidic Pb/Zn mine tailings at Lechang, Guangdong, China. FEMS Microbiol Ecol 59 118126 [CrossRef] [PubMed].
    [Google Scholar]
  46. Teather R.M., Wood P.J. ( 1982;). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43 777780 [PubMed].
    [Google Scholar]
  47. Tekere M., Mswaka A.Y., Zvauya R., Read J.S. ( 2001;). Growth, dye degradation and ligninolytic activity studies on Zimbabwean white rot fungi. Enzyme Microb Technol 28 420426 [CrossRef] [PubMed].
    [Google Scholar]
  48. Thiagarajan V., Revathia R., Aparanjinib K., Sivamanic P., Girilala M., Priyad C., Kalaichelvana P. ( 2011;). Extracellular chitinase production by Streptomyces sp. PTK19 in submerged fermentation and its lytic activity on Fusarium oxysporum PTK2 cell wall. Int J Curr Sci 1 3044.
    [Google Scholar]
  49. Tindall B.J. ( 1990;). Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66 199202 [CrossRef].
    [Google Scholar]
  50. Tindall B.J., Sikorski J., Smibert R.M., Krieg N.R. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology , 3rd edn.., pp. 330393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R. Washington, DC: American Society for Microbiology; [CrossRef].
    [Google Scholar]
  51. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37 463464 [CrossRef].
    [Google Scholar]
  52. Whang K.S., Lee J.C., Lee H.R., Han S.I., Chung S.H. ( 2014;). Terriglobus tenax sp. nov., an exopolysaccharide-producing acidobacterium isolated from rhizosphere soil of a medicinal plant. Int J Syst Evol Microbiol 64 431437 [CrossRef] [PubMed].
    [Google Scholar]
  53. Wood T., Bhat K. ( 1988;). Methods for measuring cellulase activities. Methods Enzymol 160 87112 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000411
Loading
/content/journal/ijsem/10.1099/ijsem.0.000411
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error