Strain HAL40b was isolated from the marine sponge sp. 1 collected at the Sula Ridge off the Norwegian coast and characterized by physiological, biochemical and phylogenetic analyses. The isolate was a small rod with a polar flagellum. It was aerobic, Gram-negative and oxidase- and catalase-positive. Optimal growth was observed at 20–30 °C, pH 7–9 and in 3 % NaCl. Substrate utilization tests were positive for arabinose, Tween 40 and Tween 80. Enzyme tests were positive for alkaline phosphatase, esterase lipase (C8), leucine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase and -acetyl--glucosaminidase. The predominant cellular fatty acid was C 8, followed by C and C 7. Analysis by matrix-assisted laser desorption/ionization time-of-flight MS was used to characterize the strain, producing a characteristic low-molecular-mass protein pattern that could be used as a fingerprint for identification of members of this species. The DNA G+C content was 69.1 mol%. Phylogenetic analysis supported by 16S rRNA gene sequence comparison classified the strain as a member of the class . Strain HAL40b was only distantly related to other marine bacteria including and (type strain sequence similarity >90 %). Based on its phenotypic, physiological and phylogenetic characteristics, it is proposed that the strain should be placed into a new genus as a representative of a novel species, gen. nov., sp. nov.; the type strain of is HAL40b (=DSM 17750 =CCUG 54896).


Article metrics loading...

Loading full text...

Full text loading...



  1. Agogué, H., Casamayor, E. O., Bourrain, M., Obernosterer, I., Joux, F., Herndl, G. J. & Lebaron, P.(2005a). A survey on bacteria inhabiting the sea surface microlayer of coastal ecosystems. FEMS Microbiol Ecol 54, 269–280.[CrossRef] [Google Scholar]
  2. Agogué, H., Joux, F., Obernosterer, I. & Lebaron, P.(2005b). Resistance of marine bacterioneuston to solar radiation. Appl Environ Microbiol 71, 5282–5289.[CrossRef] [Google Scholar]
  3. Althoff, K., Schütt, C., Steffen, R., Batel, R. & Müller, W. E. G.(1998). Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: harbor also for putatively toxic bacteria? Mar Biol 130, 529–536.[CrossRef] [Google Scholar]
  4. Brosius, J., Palmer, M. L., Kennedy, P. J. & Noller, H. F.(1978). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75, 4801–4805.[CrossRef] [Google Scholar]
  5. Buser, H. R., Arn, H., Guerin, P. & Rauscher, S.(1983). Determination of double bond position in mono-unsaturated acetates by mass spectrometry of dimethyl disulfide adducts. Anal Chem 55, 818–822.[CrossRef] [Google Scholar]
  6. Croci, L., Cozzi, L., Suffredini, E., Ciccaglioni, G., Toti, L., Milandri, A., Ceredi, A., Benzi, A. & Poletti, R.(2006). Characterization of microalgae and associated bacteria collected from shellfish harvesting areas. Harmful Algae 5, 266–274.[CrossRef] [Google Scholar]
  7. De Rosa, S., Milone, A., Kujumgiev, A., Stefanov, K., Nechev, I. & Popov, S.(2000). Metabolites from a marine bacterium Pseudomonas/Alteromonas, associated with the sponge Dysidea fragilis. Comp Biochem Physiol B Biochem Mol Biol 126, 391–396.[CrossRef] [Google Scholar]
  8. DeLong, E. F., Preston, C. M., Mincer, T., Rich, V., Hallam, S. J., Frigaard, N. U., Martinez, A., Sullivan, M. B., Edwards, R. & other authors(2006). Community genomics among stratified microbial assemblages in the ocean's interior. Science 311, 496–503.[CrossRef] [Google Scholar]
  9. Dieckmann, R., Graeber, I., Kaesler, I., Szewzyk, U. & von Döhren, H.(2005). Rapid screening and dereplication of bacterial isolates from marine sponges of the Sula Ridge by intact-cell-MALDI-TOF mass spectrometry (ICM-MS). Appl Microbiol Biotechnol 67, 539–548.[CrossRef] [Google Scholar]
  10. Dobretsov, S., Dahms, H. U. & Qian, P. Y.(2006). Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 22, 43–54.[CrossRef] [Google Scholar]
  11. Edlund, A., Soule, T., Sjöling, S. & Jansson, J. K.(2006). Microbial community structure in polluted Baltic Sea sediments. Environ Microbiol 8, 223–232.[CrossRef] [Google Scholar]
  12. Fieseler, L., Horn, M., Wagner, M. & Hentschel, U.(2004). Discovery of a novel candidate phylum ‘Poribacteria’ in marine sponges. Appl Environ Microbiol 70, 3724–3732.[CrossRef] [Google Scholar]
  13. Ghiglione, J.-F., Larcher, M. & Lebaron, P.(2005). Spatial and temporal scales of variation in bacterioplankton community structure in the NW Mediterranean Sea. Aquat Microb Ecol 40, 229–240.[CrossRef] [Google Scholar]
  14. Hedlund, B. P., Geiselbrecht, A. D., Bair, T. J. & Staley, J. T.(1999). Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl Environ Microbiol 65, 251–259. [Google Scholar]
  15. Hentschel, U., Schmid, M., Wagner, M., Fieseler, L., Gernert, C. & Hacker, J.(2001). Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35, 305–312.[CrossRef] [Google Scholar]
  16. Hentschel, U., Hopke, J., Horn, M., Friedrich, A. B., Wagner, M., Hacker, J. & Moore, B. S.(2002). Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68, 4431–4440.[CrossRef] [Google Scholar]
  17. Holmström, C. & Kjelleberg, S.(1999). Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30, 285–293.[CrossRef] [Google Scholar]
  18. Kaczmarska, I., Ehrmann, J. M., Bates, S. S., Green, D. H., Léger, C. & Harris, J.(2005). Diversity and distribution of epibiotic bacteria on Pseudo-nitzschia multiseries (Bacillariophyceae) in culture, and comparison with those on diatoms in native seawater. Harmful Algae 4, 725–741.[CrossRef] [Google Scholar]
  19. Kan, J. J., Wang, K. & Chen, F.(2006). Temporal variation and detection limit of an estuarine bacterioplankton community analyzed by denaturing gradient gel electrophoresis (DGGE). Aquat Microb Ecol 42, 7–18.[CrossRef] [Google Scholar]
  20. Lafi, F. F., Garson, M. J. & Fuerst, J. A.(2005). Culturable bacterial symbionts isolated from two distinct sponge species (Pseudoceratina clavata and Rhabdastrella globostellata) from the Great Barrier Reef display similar phylogenetic diversity. Microb Ecol 50, 213–220.[CrossRef] [Google Scholar]
  21. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  22. Lyman, J. & Fleming, R. H.(1940). Composition of sea water. J Mar Res 3, 134–146. [Google Scholar]
  23. Maeda, T., Hayakawa, K., You, M., Sasaki, M., Yamaji, Y., Furushita, M. & Shiba, T.(2005). Characteristics of nonylphenol polyethoxylate-degrading bacteria isolated from coastal sediments. Microbes Environ 20, 253–257.[CrossRef] [Google Scholar]
  24. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  25. Piel, J.(2006). Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr Med Chem 13, 39–50.[CrossRef] [Google Scholar]
  26. Pinhassi, J. & Berman, T.(2003). Differential growth response of colony-forming alpha- and gamma-proteobacteria in dilution culture and nutrient addition experiments from Lake Kinneret (Israel), the eastern Mediterranean Sea, and the Gulf of Eilat. Appl Environ Microbiol 69, 199–211.[CrossRef] [Google Scholar]
  27. Sfanos, K. A. S., Harmody, D. K., Dang, P., Ledger, A., Pomponi, S. A., McCarthy, P. J. & Lopez, J. V.(2005). A molecular systematic survey of cultured microbial associates of deep-water marine invertebrates. Syst Appl Microbiol 28, 242–264.[CrossRef] [Google Scholar]
  28. Spurr, A. R.(1969). A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26, 31–42.[CrossRef] [Google Scholar]
  29. Steven, A. C., Trus, B. L., Maizel, J. V., Unser, M., Parry, D. A. D., Wall, J. S., Hainfeld, J. F. & Studier, F. W.(1988). Molecular substructure of a viral receptor-recognition protein. The gp17 tail-fiber of bacteriophage T7. J Mol Biol 200, 351–365.[CrossRef] [Google Scholar]
  30. Taylor, M. W., Schupp, P. J., Dahllöf, I., Kjelleberg, S. & Steinberg, P. D.(2004). Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6, 121–130. [Google Scholar]
  31. Taylor, M. W., Radax, R., Steger, D. & Wagner, M.(2007). Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71, 295–347.[CrossRef] [Google Scholar]
  32. Thiel, V., Blumenberg, M., Hefter, J., Pape, T., Pomponi, S., Reed, J., Reitner, J., Wörheide, G. & Michaelis, W.(2002). A chemical view of the most ancient metazoa – biomarker chemotaxonomy of hexactinellid sponges. Naturwissenschaften 89, 60–66.[CrossRef] [Google Scholar]
  33. Webb, V. L. & Maas, E.(2002). Sequence analysis of 16S rRNA gene of cyanobacteria associated with the marine sponge Mycale (Carmia) hentscheli. FEMS Microbiol Lett 207, 43–47.[CrossRef] [Google Scholar]
  34. Webster, N. S. & Hill, R. T.(2001). The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an α-proteobacterium. Mar Biol 138, 843–851.[CrossRef] [Google Scholar]
  35. Webster, N. S., Wilson, K. J., Blackall, L. L. & Hill, R. T.(2001). Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67, 434–444.[CrossRef] [Google Scholar]
  36. Webster, N. S., Negri, A. P., Munro, M. M. H. G. & Battershill, C. N.(2004). Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6, 288–300.[CrossRef] [Google Scholar]
  37. Yoon, J.-H., Yeo, S.-H., Kim, I.-G. & Oh, T.-K.(2004).Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54, 1799–1803.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 3, pp. 585 - 590

MALDI-TOF mass spectrum of HAL40b in the mass range of 2000–10000 Da.

Whole-cell fatty acid composition of strain HAL40b .

[PDF file of Supplementary Fig. S1 and Supplementary Table S1](109 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error