
Full text loading...
Strain HAL40bT was isolated from the marine sponge Haliclona sp. 1 collected at the Sula Ridge off the Norwegian coast and characterized by physiological, biochemical and phylogenetic analyses. The isolate was a small rod with a polar flagellum. It was aerobic, Gram-negative and oxidase- and catalase-positive. Optimal growth was observed at 20–30 °C, pH 7–9 and in 3 % NaCl. Substrate utilization tests were positive for arabinose, Tween 40 and Tween 80. Enzyme tests were positive for alkaline phosphatase, esterase lipase (C8), leucine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase and N-acetyl-β-glucosaminidase. The predominant cellular fatty acid was C17 : 1 ω8, followed by C17 : 0 and C18 : 1 ω7. Analysis by matrix-assisted laser desorption/ionization time-of-flight MS was used to characterize the strain, producing a characteristic low-molecular-mass protein pattern that could be used as a fingerprint for identification of members of this species. The DNA G+C content was 69.1 mol%. Phylogenetic analysis supported by 16S rRNA gene sequence comparison classified the strain as a member of the class Gammaproteobacteria. Strain HAL40bT was only distantly related to other marine bacteria including Neptunomonas naphthovorans and Marinobacter daepoensis (type strain sequence similarity >90 %). Based on its phenotypic, physiological and phylogenetic characteristics, it is proposed that the strain should be placed into a new genus as a representative of a novel species, Spongiibacter marinus gen. nov., sp. nov.; the type strain of Spongiibacter marinus is HAL40bT (=DSM 17750T =CCUG 54896T).
Article metrics loading...
Full text loading...
References
Data & Media loading...
Supplements
International Journal of Systematic and Evolutionary Microbiology vol. 58 , part 3, pp. 585 - 590
Supplementary Fig. S1. MALDI-TOF mass spectrum of Spongiibacter marinus HAL40b Tin the mass range of 2000–10000 Da.
Supplementary Table S1. Whole-cell fatty acid composition of strain HAL40b T.
[PDF file of Supplementary Fig. S1 and Supplementary Table S1](109 KB)