1887

Abstract

Three Gram-negative, rod-shaped, non-spore-forming bacteria (strains CCUG 52769, CCUG 52770 and CCUG 52771) isolated from haemodialysis water were characterized taxonomically, together with five strains isolated from industrial waters (CCUG 52428, CCUG 52507, CCUG 52575, CCUG 52590 and CCUG 52631). Phylogenetic analysis based on 16S rRNA gene sequences indicated that these isolates belonged to the class and were related to the genus , with 16S rRNA gene sequence similarities higher than 99 % with the only species of the genus, and to sp. DSM 2583. The type strains of and were their closest neighbours (97.9 and 97.3 % 16S rRNA gene sequence similarity, respectively). Phylogenetic analysis was also performed for the internally transcribed spacer region and for three genes [ (hydrogenase), / (Rubisco) and (nitrogenase)] relevant for the metabolism of the genus . DNA–DNA hybridization, major fatty acid composition and phenotypical analyses were carried out, which included the type strain of obtained from different culture collections (ATCC 15946, CCUG 32988, DSM 654, IAM 14368 and LMG 2256), as well as IAM 14711 and CCUG 52219. Results of DNA–DNA hybridization, physiological and biochemical tests supported the conclusion that strains CCUG 52769, CCUG 52770 and CCUG 52771 represent a homogeneous phylogenetic and genomic group, including strain DSM 2583, clearly differentiated from the industrial water isolates and from the type strain. On the basis of phenotypic and genotypic characteristics, these strains belong to two novel species within the genus , for which the names sp. nov. and sp. nov. are proposed. The type strains of sp. nov. and sp. nov. are CCUG 52769 (=CECT 7234) and CCUG 52575 (=CECT 7233), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65149-0
2007-11-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/11/2629.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65149-0&mimeType=html&fmt=ahah

References

  1. Aragno, M. & Schlegel, H. S. ( 1992; ). The mesophilic hydrogen-oxidizing (Knallgas) bacteria. In The Prokaryotes, vol. I, pp. 344–384, 2nd edn. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. Springer-Verlag.
  2. Barraquio, W. L., Padre, B. C., Jr, Watanabe, I. & Knowles, R. ( 1986; ). Nitrogen fixation by Pseudomonas saccharophila Doudoroff ATCC 15946. J Gen Microbiol 132, 237–241.
    [Google Scholar]
  3. Cowan, S. T. ( 1974; ). Cowan and Steel's Manual for the Identification of Medical Bacteria, 2nd edn. Cambridge University Press.
  4. Doudoroff, M. ( 1940; ). The oxidative assimilation of sugars and related substances by Pseudomonas saccharophila with a contribution to the problem of the direct respiration of di- and polysaccharides. Enzymologia 9, 59–72.
    [Google Scholar]
  5. Doudoroff, M., Palleroni, N. J., McGee, J. & Ohara, M. ( 1956; ). Metabolism of carbohydrates by Pseudomonas saccharophila. J Bacteriol 71, 196–201.
    [Google Scholar]
  6. Felsenstein, J. ( 1989; ). phylip – phylogeny inference package (version 3.2). Cladistics 5, 164–166.
    [Google Scholar]
  7. Giri, B. J., Bano, N. & Hollibaugh, J. T. ( 2004; ). Distribution of RuBisCO genotypes along a redox gradient in Mono Lake, California. Appl Environ Microbiol 70, 3443–3448.[CrossRef]
    [Google Scholar]
  8. Gomila, M., Gascó, J., Busquets, A., Gil, J., Bernabeu, R., Buades, J. M. & Lalucat, J. ( 2005; ). Identification of culturable bacteria present in haemodialysis water and fluid. FEMS Microbiol Ecol 52, 101–114.[CrossRef]
    [Google Scholar]
  9. Gomila, M., Gascó, J., Gil, J., Bernabeu, R., Iñigo, V. & Lalucat, J. ( 2006; ). A molecular microbial ecology approach to studying hemodialysis water and fluid. Kidney Int 70, 1567–1576.[CrossRef]
    [Google Scholar]
  10. Guasp, C., Moore, E. R. B., Lalucat, J. & Bennasar, A. ( 2000; ). Utility of internally-transcribed 16S–23S rDNA spacer regions for the definition of Pseudomonas stutzeri genomovars and other Pseudomonas species. Int J Syst Evol Microbiol 50, 1629–1639.[CrossRef]
    [Google Scholar]
  11. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  12. Kulakov, L. A., McAlister, M. B., Ogden, K. L., Larkin, M. J. & O'Hanlon, J. F. ( 2002; ). Analysis of bacteria contaminating ultrapure water in industrial systems. Appl Environ Microbiol 68, 1548–1555.[CrossRef]
    [Google Scholar]
  13. Lalucat, J. ( 1988; ). Analysis of refractile (R) bodies. In Methods in Microbiology – Electron Microscopy in Microbiology, vol. 20, pp. 79–90. Edited by F. Mayer. Academic Press.
  14. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  15. Page, R. D. M. ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  16. Palleroni, N. J. ( 1980; ). Isolation and properties of a new hydrogen bacterium related to Pseudomonas saccharophila. J Gen Microbiol 117, 155–161.
    [Google Scholar]
  17. Reasoner, D. J. & Geldreich, E. E. ( 1985; ). A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49, 1–7.
    [Google Scholar]
  18. Selesi, D., Schmid, M. & Hartmann, A. ( 2005; ). Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL) in differently managed agricultural soils. Appl Environ Microbiol 71, 175–184.[CrossRef]
    [Google Scholar]
  19. Stringfellow, W. T. & Aitken, M. D. ( 1995; ). Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads. Appl Environ Microbiol 61, 357–362.
    [Google Scholar]
  20. Suyama, T., Shigematsu, T., Takaichi, S., Nodasaka, Y., Fujikawa, S., Hosoya, H., Tokiwa, Y., Kanagawa, T. & Hanada, S. ( 1999; ). Roseateles depolymerans gen. nov., sp. nov., a new bacteriochlorophyll a-containing obligate aerobe belonging to the β-subclass of the proteobacteria. Int J Syst Bacteriol 49, 449–457.[CrossRef]
    [Google Scholar]
  21. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  22. Ueda, T., Suga, Y., Yahiro, N. & Matsuguchi, T. ( 1995; ). Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177, 1414–1417.
    [Google Scholar]
  23. Xie, C. H. & Yokota, A. ( 2005; ). Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australiaca sp. nov. and Pelomonas saccharophila gen. nov., comb. nov. respectively. Int J Syst Evol Microbiol 55, 2419–2425.[CrossRef]
    [Google Scholar]
  24. Ziemke, F., Höfle, M. G., Lalucat, J. & Rosselló-Mora, R. ( 1998; ). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65149-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65149-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 2629 - 2635

ITS1 gene sequence-based phylogenetic tree generated by the neighbour-joining method

(a) and (b) gene sequence-based phylogenetic tree generated by the neighbour-joining method

Distance matrix of 16S rRNA between our strains and the strains selected for the study

Results of DNA–DNA hybridizations [Single PDF file](566 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error